
CompSci 4 11.1Collections

Collections

CompSci 4 11.2Collections

The Plan

ÿ Why use collections?
ÿ What collections are available?
ÿ Accessing the elements of a collection?
ÿ Examples
ÿ Practice

CompSci 4 11.3Collections

Why use collections?

Consider the code below. What if you wanted 1000
scores? Why is this code not designed well?

int score0, score1, score2, score3, ..., score100;

score0 = input.nextInt();
score1 = input.nextInt();
...
score100 = input.nextInt();

int sum = score0 + score1 + score2 + ... + score100;
double average = sum / 100.0;

CompSci 4 11.4Collections

Collections & Loops

Recall:
þ Loops

o group repeatedly executed code for uniformity
o make the number of repetitions easily changeable
o can be combined with selection to make more complex

algorithms



CompSci 4 11.5Collections

Collections Enable

ÿ Easily declaring any number of variables
ÿ Referring to each variable in the collection
ÿ Grouping similar variables under one name
ÿ Grouping similar code that acts on the variables
ÿ Changing the number of variables easily

CompSci 4 11.6Collections

Why use collections?

The code below uses an array to average the 100
scores. What change would make it do 1000 scores?

int[] scores = new int[100];

double sum = 0;
for (int i = 0; i <

scores.length; i++)

{
scores[i] = input.nextInt();
sum += scores[i];

}

double average = sum / scores.length;

CompSci 4 11.7Collections

What a Collection looks like

92
62

77
56
98
87
44
76
45

score

...

scores[1]
scores[0]

scores[2]
scores[3]
scores[4]
scores[5]
scores[6]

scores[n-2]
scores[n-1]

scores is an array

scores[i] is an int

arrays are only one
way to collect variables

CompSci 4 11.8Collections

What collections are available?

ÿ Arrays
ÿ java.util.Collection

þ ArrayList
þ LinkedList
þ HashSet
þ LinkedHashSet

ÿ java.util.Map
þ HashMap
þ TreeMap



CompSci 4 11.9Collections

Arrays

ÿ Store primitives or particular Objects
ÿ Size is immutable
ÿ Contain length field
ÿ Is an Object
ÿ Indexed 0 to length-1
ÿ Can generate ArrayIndexOutOfBoundsException

CompSci 4 11.10Collections

ArrayLists

ÿ Generic, so must specify what kind of thing to hold
ÿ Size is typically dynamic
ÿ Has a size() method
ÿ Is an Object
ÿ Indexing varies
ÿ Has toArray(Object[]) method for converting

to an array.

CompSci 4 11.11Collections

Using an ArrayList
ÿ Can hold any number of scores, does not need to

be known beforehand:

ÿ Note, must hold Integer objects instead of int
primitives --- usually not a problem

ArrayList<Integer> scores = new ArrayList<Integer>();

double sum = 0;
for (int i = 0; i <

100; i++)

{
scores.add(input.nextInt());
sum += scores.get(i);

}

double average = sum / scores.size();

CompSci 4 11.12Collections

Enhanced for loop

ÿ Works for any kind of collection
ÿ Simpler syntax for accessing each variable in the collection:

// given array scores, with each value initialized
double sum = 0;
for (int current : scores)
{

sum += current;
}

// given ArrayList scores, with each value initialized
sum = 0;
for (Integer current : scores)
{

sum += current;
}



CompSci 4 11.13Collections

Practice

ÿ Declare an array of integers
ÿ Initialize the array to be able to hold 10 integers
ÿ Set the values in the array to be the first ten

squares (i.e. 1, 4, 9, 16, 25 ...)
ÿ Sum the values
ÿ Output the average
ÿ Alter your code to do the first 100 integers instead

CompSci 4 11.14Collections

More Practice

ÿ Change the code in pong so that the paddles and
walls are stored in a collection instead of
individual variables

ÿ Play wackadot with a random number of enemy
dots (e.g., from 3 to 10) set at the beginning of
each game


