Graph implementations

- **Typical operations on graph:**
 - Add vertex
 - Add edge (parameters?)
 - getAdjacent(vertex)
 - getVertices(..)
 - String->Vertex (vice versa)

- **Different kinds of graphs**
 - Lots of vertices, few edges, *sparse* graph
 - Use adjacency list
 - Lots of edges (max # ?) *dense* graph
 - Use adjacency matrix
Graph implementations (continued)

- Adjacency matrix
 - Every possible edge represented, how many?

- Adjacency list uses $O(V+E)$ space
 - What about matrix?
 - Which is better?

- What do we do to get adjacent vertices for given vertex?
 - What is complexity?
 - Compared to adjacency list?

- What about weighted edges?
Memoization

- **How do we avoid solving the same problem?**
 - Consider APT BSTs
 - Review student submission
 - Consider similarities to Fibonacci
 - See next slide

- **How to avoid cost?**

- **How is this relevant to APT?**
 - Create map of parameter to solution
 - Avoid recursion/solving when problem already solved
Fibonacci: Don’t do this recursively

```java
public long recFib(int n) {
    // precondition: 0 <= n
    // postcondition: returns the n-th Fibonacci number
    if (0 == n || 1 == n) {
        return 1;
    } else {
        return recFib(n-1) + recFib(n-2);
    }
}
```

- How many clones/calls to compute F(5)?
- How many calls of F(1)?
- How many total calls?
Shortest path in weighted graph

- We need to modify approach slightly for weighted graph
 - Edges have weights, breadth first by itself doesn’t work
 - What’s shortest path from A to F in graph below?

- Use same idea as breadth first search
 - Don’t add 1 to current distance, add ???
 - Might adjust distances more than once
 - What vertex do we visit next?

- What vertex is next is key
 - Use greedy algorithm: closest
 - Huffman is greedy, ...
Greedy Algorithms

- **A greedy algorithm makes a locally optimal decision that leads to a globally optimal solution**
 - Huffman: choose two nodes with minimal weight, combine
 - Leads to optimal coding, optimal Huffman tree
 - Making change with American coins: choose largest coin possible as many times as possible
 - Change for $0.63, change for $0.32
 - What if we’re out of nickels, change for $0.32?

- **Greedy doesn’t always work, but it does sometimes**
- **Weighted shortest path algorithm is Dijkstra’s algorithm, greedy and uses priority queue**
Shortest Path (Unweighted)

1. Mark all vertices with infinity (*) except starting vertex with 0.
2. Place starting vertex in queue.
3. Repeat until queue is empty:
 1. Remove a vertex from front of queue.
 2. For each adjacent vertex marked with *,
 i. process it,
 ii. mark it with source distance + 1
 iii. place it on the queue.
Shortest Path (Unweighted)

- Mark all vertices with infinity (*)
- Mark starting vertex with 0
- Place starting vertex in queue
- Repeat until queue is empty:
 1. Remove a vertex from front of queue
 2. For each adjacent vertex marked with *,
 i. process it,
 ii. mark it with source distance + 1
 iii. place it on the queue.

How do we get actual “Path”?
Shortest Path (Weighted): Dijkstra

- Unmark all vertices and give infinite weight
- Set weight of starting vertex at 0 and place in priority queue
- Repeat until priority queue is empty:
 1. Remove a vertex from priority queue
 i. Process and mark (weight now permanent)
 2. For each adjacent unmarked vertex
 i. Set weight at lesser of current weight and (source weight + path weight).
 - May involve reducing previous weight setting
 ii. Place in priority queue (if not there already)
Shortest Path (Weighted): Dijkstra

Diagram showing the shortest path algorithm with nodes labeled v0, v1, v2, v3, v4, v5, and v6. The path follows the sequence 0 → 1 → 2 → 3 → 4 → 6 with weights as indicated by the numerical values in the diagram.
Shortest Path (Weighted): Dijkstra

1. Mark all vertices with infinity (*).
2. Mark the starting vertex with 0.
3. Place the starting vertex in the queue.
4. Repeat until the queue is empty:
 a. Remove a vertex from the front of the queue.
 b. For each adjacent vertex marked with *,
 i. Process it,
 ii. Mark it with the source distance + 1,
 iii. Place it on the queue.

How do we get actual "Path"?