Welcome!

Discrete Mathematics for Computer Science
CompSci 102
D106 LSRC
M, W 10:05-11:20

Professor: Jeffrey Forbes

Frequently Asked Questions

- What are the prerequisites?
> CPS 6 but CPS 100 preferred
> Math $31 \& 32$
- How does this course fit into the curricula?
> Useful foundation for courses like Compsci 130 and 140
> Solid grounding in mathematical foundations
> Replaces requirement of Math 135 (probability), Math 124 (Combinatorics) and Math 187 (Logic)
- What is recitation? Is it required?
> Recitation is a more hands-on section where you will do problems and discuss solutions. Your work there will be graded.
- How do keep up to date?
> Read web page regularly
http://www.cs.duke.http://www.cs.duke.edu/courses/spring06 /cps102
> Read discussion forum regularly

Course goals

- What we want to teach
> Precise, reliable, powerful thinking
> The ability to state and prove nontrivial facts, in particular about programs
Mathematical foundations and ideas useful throughout CS
> Correctly read, represent and analyze various types of discrete structures using standard notations.
- What areas
> Propositions and Proofs
> Induction
> Basics of Counting
- Arithmetic Algorithms
> Probability
- Structures
http://www.cs.duke.edu/phpBB2/index.php?c=75
Read your email

So, what's this class about?

What are "discrete structures" anyway?

- "Discrete" ($=$ "discreet"!) - Composed of distinct, separable parts. (Opposite of continuous.)
discrete:continuous $::$ digital:analog
- "Structures" - Objects built up from simpler objects according to some definite pattern.
- "Discrete Mathematics" - The study of discrete, mathematical objects and structures.

What is Mathematics, really?

- It's not just about numbers!
- Mathematics is much more than that:

Mathematics is, most generally, the study of any and all absolutely certain truths about any and all perfectly well-defined concepts.

- But, these concepts can be about numbers, symbols, objects, images, sounds, anything!

Relationships Between Structures

- " \rightarrow " : "Can be defined in terms of"

Discrete Structures We'll Study

- Propositions
- Sequences
- Predicates
- Strings
- Proofs
- Permutations
- Sets
- Combinations
- Functions
- Relations
- Integers
- Graphs
- Summations

Some Notations We'll Learn

$\neg p$	$p \wedge q$	$p \oplus q$	$p \rightarrow q$	$p \Leftrightarrow q$	$\forall x P(x)$
$\exists x P(x)$	$\left\{a_{1}, \cdots, a_{n}\right\}$	$\mathbf{Z}, \mathbf{N}, \mathbf{R}$	\therefore	$\{x \mid P(x)\}$	$x \notin S$
\varnothing	$S \subseteq T$	$\|S\|$	$A \cup B$	\bar{A}	$\bigcap_{i=1}^{n} A_{i}$
$f: A \rightarrow B$	$f^{-1}(x)$	$f \circ g$	$\lfloor x\rfloor$	$\sum_{\alpha \in S} a_{\alpha}$	$\prod_{i=1}^{n} a_{i}$
O, Ω, Θ	\min , \max	$a \nmid b$	$\mathrm{gcd}, \mathrm{lcm}$	\bmod	$a \equiv b(\bmod m)$
$\left(a_{k} \cdots a_{0}\right)_{b}$	$\left[a_{i j}\right]$	\mathbf{A}^{T}	$\mathbf{A}{ }^{1} \cdot \mathbf{B}$	$\mathbf{A}^{[n]}$	$\binom{n}{r}$
$C\left(n ; n_{1}, \cdots, n_{m}\right)$	$p(E \mid F)$	R^{*}	Δ	$[a]_{R}$	$\operatorname{deg}^{+}(v)$

Why Study Discrete Math?

- The basis of all of digital information processing is: Discrete manipulations of discrete structures represented in memory.
- Useful for solving the following calendar
- Scheduling cab drivers for the Olympics
- Akamai
- Formal specification of XML
- Discrete math concepts are also widely used throughout math, science, engineering, economics, biology, etc., ...
- A generally useful tool for rational thought!

Course Outline (as per Rosen)

1. Logic (§1.1-4)
2. Proof methods (§1.5)
3. Set theory (§1.6-7)
4. Functions (§1.8)
5. Number theory (§2.4-5)
6. Number theory apps. (§2.6)
7. Proof strategy (§3.1)
8. Sequences (§3.2)
9. Summations (§3.2)
10. Countability (§3.2)
11. Inductive Proofs (§3.3)
12. Recursion (§3.4-5)

- Advanced algorithms \& data structures
- Programming language compilers \& interpreters.
- Computer networks
- Operating systems
- Computer architecture
- Database management systems
- Cryptography
- Error correction codes
- Graphics \& animation algorithms, game engines, etc....
- I.e., the whole field!

Topics Not Covered

1. Algorithms!

- See CompSci 130

2. Boolean circuits (ch. 10)

- See CompSci 104 and EE 151

3. Models of computing (ch. 11)

- See CompSci 140

4. Linear algebra \& Matrices

- See Math 104

5. Abstract algebra (not in Rosen)

- Groups, rings, fields, vector spaces, algebras, etc.
- See Math 121

A Proof Example

- Theorem: (Pythagorean Theorem of Euclidean geometry) For any

Pythagoras of Samo (ca. 569-475 B.C.) real numbers a, b, and c, if a and b are the base-length and height of a right triangle, and c is the length of its hypotenuse, then $a^{2}+b^{2}=c^{2}$.

- Proof?

Proof of Pythagorean Theorem

- Proof. Consider the below diagram:
- Exterior square area $=c^{2}$, the sum of the following regions:
- The area of the 4 triangles $=4(1 / 2 a b)=2 a b$
- The area of the small interior square $=(b-a)^{2}=b^{2}-2 a b+a^{2}$.
- Thus, $c^{2}=2 a b+\left(b^{2}-2 a b+a^{2}\right)=a^{2}+b^{2}$.

Note: It is easy to show that the exterior and interior quadrilaterals in this construction are indeed squares, and that the side length of the internal square is indeed $b-a$ (where b is defined as the length of the longer of the two perpendicular sides of the triangle).
These steps would also need to be included in a more complete pro

Areas in this diagram are in boldface; lengths are in a
© Michael Frank
normal font weight.

Propositions

- Statement that is either true or false
- Examples
- "This encryption system cannot be broken"
- "My program works efficiently in all cases"
- "'There are no circumstances under which I would lie to Congress"
- "It is inconceivable that our legal system would execute an innocent person"
- A theorem is a proposition that is guaranteed by a proof

Finally: Have Fun!

Propositional Logic (§1.1)

Propositional Logic is the logic of compound statements built from simpler statements using so-called Boolean connectives.
Some applications in computer science:

- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases \& search engines.

Definition of a Proposition

Definition: A proposition (denoted p, q, r, \ldots) is simply:

- a statement (i.e., a declarative sentence)
- with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F)
- it is never both, neither, or somewhere "in between!"
- However, you might not know the actual truth value,
- and, the truth value might depend on the situation or context.
- Later, we will study probability theory, in which we assign degrees of certainty ("between" \mathbf{T} and $\mathrm{F}_{\mathrm{s}, \mathrm{la}}$ to propositions.
© Michael Frank

Operators / Connectives

An operator or connective combines one or more operand expressions into a larger expression. (E.g., "+" in numeric exprs.)

- Unary operators take 1 operand (e.g., -3); binary operators take 2 operands (eg 3×4).
- Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.

Some Popular Boolean Operators

Formal Name	$\underline{\text { Nickname }}$	Arity	$\underline{\text { Symbol }}$
Negation operator	NOT	Unary	\neg
Conjunction operator	AND	Binary	\wedge
Disjunction operator	OR	Binary	\vee
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

CompSci 102

The Conjunction Operator

The binary conjunction operator " \wedge " $(A N D)$ combines two propositions to form their logical conjunction.
E.g. If $p=$ "I will have salad for lunch." and
$q=$ "I will have steak for dinner.", then $p \wedge$
$q=$ "I will have salad for lunch and
I will have steak for dinner."

$$
\text { Remember: " } \wedge \text { " points up like an "A", and it means " } \Delta N D \text { " }
$$

The Negation Operator

The unary negation operator " \neg " (NOT) transforms a prop. into its logical negation.
E.g. If $p=$ "I have brown hair."
then $\neg p=$ "I do not have brown hair."
The truth table for NOT:
$\mathrm{T}: \equiv$ True; $\mathrm{F}: \equiv$ False
" $\equiv \equiv$ " means "is defined as"

Conjunction Truth Table

- Note that a conjunction $p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}$ of n propositions

Operand columns		${ }^{\wedge} q$
p	q	$p^{\wedge} q$
F	F	F
F	T	F
T	F	F
T	T	T

- Also: \neg and \wedge operations together are sufficient to express any Boolean truth table!

The Disjunction Operator

The binary disjunction operator " v " $(O R)$ combines two propositions to form their logical disjunction.
$p=$ "My car has a bad engine."
$q=$ "My car has a bad carburetor."

$p \vee q=$ "Either my car has a bad engine, or my car has a bad carburetor." Affer the downwardMeaning is like "and/or" in English. © Michael Frank pointing "axe" of " v " splits the wood, you can take 1 piece $O R$ can take 1 piece OR
the other, or both the other, or both

Disjunction Truth Table

- Note that $p \vee q$ means that p is true, or q is true, or both are true!
- So, this operation is also called inclusive or, because it includes the

p	q	$p^{\vee} q$
F	F	F
F	T	$\mathbf{T}\}$Note difference
T	F	$\mathbf{T}\}$ drom AND
T	T	T

- " \neg " and " v " together are also universal.

A Simple Exercise

Let $p=$ "It rained last night", $q=$ "The sprinklers came on last night," $r=$ "The lawn was wet this morning."
Translate each of the following into English:
$\neg p \quad=$ "It didn’t rain last night."
$r \wedge \neg p \quad=$ "The lawn was wet this morning, and
$\neg r \vee p \vee q=\quad$ "Either the lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night." © Michael Frank

The Exclusive Or Operator

The binary exclusive-or operator " \oplus " $(X O R)$ combines two propositions to form their logical "exclusive or" (exjunction?).
$p=$ "I will earn an A in this course,"
$q=$ "I will drop this course,"
$p \oplus q=$ "I will either earn an A in this course, or I will drop it (but not both!)"

Natural Language is Ambiguous

Note that English "or" can be ambiguous regarding the "both" case!
"Pat is a singer or Pat is a writer." - V
"Pat is a man or Pat is a woman." -

p	q	p "or" q
F	F	F
F	T	T
T	F	T
T	T	$?$

Need context to disambiguate the meaning!
For this class, assume "or" means inclusive.

Exclusive-Or Truth Table

- Note that $p \oplus q$ means that p is true, or q is true, but not both!
- This operation is called exclusive or, because it excludes the
\(\left.\begin{array}{cc|c}p \& q \& p^{\oplus} q

\hline \mathrm{~F} \& \mathrm{~F} \& \mathrm{~F}

\mathrm{~F} \& \mathrm{~T} \& \mathrm{~T}

\mathrm{~T} \& \mathrm{~F} \& \mathrm{~T}

\mathrm{~T} \& \mathrm{~T} \& \mathrm{~F}\end{array}\right\}\)| $\substack{\text { Note } \\ \text { differnce } \\ \text { from OR. }}$ |
| :---: |
| are true. | possibility that both p and q are true.

from OR.

- " \neg " and " \oplus " together are not universal.

The Implication Operator

I.e., If p is true, then q is true; but if p is not true, then q could be either true or false.
E.g., let $p=$ "You study hard."
$q=$ "You will get a good grade."
$p \rightarrow q=$ "If you study hard, then you will get
a good grade." (else, it could go either way)

Implication Truth Table

- $p \rightarrow q$ is false only when p is true but q is not true.
- $p \rightarrow q$ does not say that p causes q !
- $p \rightarrow q$ does not require that p or q are ever true!

p	q	$p \rightarrow q$
F	F	T
F	T	T
The		
T	F	$\mathrm{F}\}$
T	only	
T	T	False case!

- E.g. " $(1=0) \rightarrow$ pigs can fly" is TRUE!

Why does this seem wrong?

- Consider a sentence like,
- "If I wear a red shirt tomorrow, then I will win the lottery!"
- In logic, we consider the sentence True so long as either I don't wear a red shirt, or I win the lottery.
- But, in normal English conversation, if I were to make this claim, you would think that I was lying.
- Why this discrepancy between logic \& language?

Examples of Implications

- "If this lecture ever ends, then the sun will rise tomorrow." True or False?
- "If Tuesday is a day of the week, then I am a penguin." True or False?
- "If $1+1=6$, then Bush is president." True or False?
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False?

Resolving the Discrepancy

- In English, a sentence "if p then q " usually really implicitly means something like,
- "In all possible situations, if p then q."
- That is, "For p to be true and q false is impossible."
- Or, "I guarantee that no matter what, if p, then q."
- This can be expressed in predicate logic as:
- "For all situations s, if p is true in situation s, then q is also true in situation s "
- Formally, we could write: $\forall s, P(s) \rightarrow Q(s)$
- That sentence is logically False in our example, because for me to wear a red shirt and for me to not win the lottery is a possible (even if not actual) situation.
- Natural language and logic then agree with each

C other.

English Phrases Meaning $p \rightarrow q$

- " p implies q "
- "if p, then q "
- "if p, q "
- "when p, q "
- "whenever p, q "
- " q if p "
- " q when p "
- " q whenever p "
- " p only if q "
- " p is sufficient for q "
- " q is necessary for p "
- " q follows from p "
- " q is implied by p "

We will see some equivalent logic expressions later.

Converse, Inverse, Contrapositive

Some terminology, for an implication $p \rightarrow q$:

- Its converse is: $\quad q \rightarrow p$.
- Its inverse is: $\quad \neg p \rightarrow \neg q$.
- Its contrapositive: $\neg q \rightarrow \neg p$.
- One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

The biconditional operator

The biconditional $p \leftrightarrow q$ states that p is true if and only if (IFF) q is true.
When we say \mathbf{P} if and only if \mathbf{q}, we are saying that P says the same thing as Q .
Examples?
Truth table?

Biconditional Truth Table

- $p \leftrightarrow q$ means that p and q have the same truth value.
- Note this truth table is the exact opposite of \oplus 's! Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$
- $p \leftrightarrow q$ does not imply

p	q	$p^{\leftrightarrow} q$
F	F	T
F	T	F
T	F	F
T	T	T

other, or that they have a common cause.

Some Alternative Notations

Name:	not	and	Or	XOr	implies	iff	
Propositional logic:	ᄀ	\wedge	V	¢	\rightarrow	\leftrightarrow	
Boolean algebra:	\bar{p}	$p q$	+	\oplus			
C/C++/Java (wordwise):	!	\& \&	\|		$!=$		= $=$
C/C++/Java (bitwise):	\sim	\&	1	\wedge			
Logic gates:	-	- -	\sum	D			

