Welcome!

Discrete Mathematics for Computer Science CompSci 102 D106 LSRC M, W 10:05-11:20

Professor: Jeffrey Forbes

CompSci 102

Course goals

- What we want to teach
 - Precise, reliable, powerful thinking
 - > The ability to state and prove nontrivial facts, in particular about programs
 - > Mathematical foundations and ideas useful throughout CS
 - Correctly read, represent and analyze various types of discrete structures using standard notations.
- What areas
 - > Propositions and Proofs
 - > Induction
 - Basics of Counting
 - Arithmetic Algorithms
 - Probability
 - > Structures

```
CompSci 102
```

1.3

1.1

Frequently Asked Questions

- What are the prerequisites?
 - > CPS 6 but CPS 100 preferred
 - > Math 31 & 32
- How does this course fit into the curricula?
 - > Useful foundation for courses like Compsci 130 and 140
 - > Solid grounding in mathematical foundations
 - Replaces requirement of Math 135 (probability), Math 124 (Combinatorics) and Math 187 (Logic)
- What is recitation? Is it required?
 - Recitation is a more hands-on section where you will do problems and discuss solutions. Your work there will be graded.
- How do keep up to date?
 - Read web page regularly

http://www.cs.duke.http://www.cs.duke.edu/courses/spring06 /cps102

- Read discussion forum regularly
- http://www.cs.duke.edu/phpBB2/index.php?c=75
 - Read your email

So, what's this class about?

What are "discrete structures" anyway?

- "Discrete" (≠ "discreet"!) Composed of distinct, separable parts. (Opposite of continuous.) discrete:continuous :: digital:analog
- "*Structures*" Objects built up from simpler objects according to some definite pattern.
- "Discrete Mathematics" The study of discrete, mathematical objects and structures.

CompSci 102

12

Why Study Discrete Math?

- The basis of all of digital information processing is: Discrete manipulations of discrete structures represented in memory.
- Useful for solving the following calendar
 - Scheduling cab drivers for the Olympics
 - Akamai
 - Formal specification of XML
- Discrete math concepts are also widely used throughout math, science, engineering, economics, biology, etc., ...
- A generally useful tool for rational thought!

- Operating systems
- Computer architecture

- management systems
- algorithms, game engines, etc....
- *I.e.*, the whole field!

CompSci 102	© Michael Frank	1.9	CompSci 102	© Michael Frank	1.10

Course Outline (as per Rosen)

© Michael Frank

1. Logic (§1.1-4)	
-------------------	--

- 2. Proof methods (§1.5)
- 3. Set theory $(\S1.6-7)$
- 4. Functions (§1.8)
- Number theory $(\S2.4-5)$ 5.
- 6. Number theory apps. $(\S2.6)$
- Proof strategy (§3.1) 7.
- 8. Sequences (§3.2)
- 9. Summations (§3.2)
- Countability (§3.2) 10.
- Inductive Proofs (§3.3) 11.
- Recursion (§3.4-5) 12.

CompSci 102

13. Program verification (§3.6)

1.11

- Combinatorics (§4.1-4.4,4.6) 14.
- Probability (ch. 5) 15.
- Graph Theory (ch. 8) 16.

Topics Not Covered

- Algorithms! 1.
- See CompSci 130 2. Boolean circuits (ch. 10)
 - See CompSci 104 and EE 151
- 3. Models of computing (ch. 11) - See CompSci 140
- 4. Linear algebra & Matrices - See Math 104
- 5. Abstract algebra (not in Rosen) - Groups, rings, fields, vector spaces, algebras, etc. - See Math 121

CompSci 102

© Michael Frank

A Proof Example

1.13

• **Theorem:** (Pythagorean Theorem Pythagoras of Samos of Euclidean geometry) For any (ca. 569-475 B.C.) real numbers a, b, and c, if a and b are the base-length and height of a right triangle, and *c* is the length of its hypotenuse, then $a^2 + b^2 = c^2$. $c = \sqrt{a^2 + b^2}$

© Michael Frank

• Proof?

CompSci 102

Statement that is either true or false

• Examples

Propositions

- "This encryption system cannot be broken"
- "My program works efficiently in all cases"
- ``There are no circumstances under which I would lie to Congress"
- ``It is inconceivable that our legal system would execute an innocent person"
- A *theorem* is a proposition that is guaranteed by a proof

CompSci 102	

© Michael Frank

Proof of Pythagorean Theorem

- **Proof.** Consider the below diagram:
 - Exterior square area = c^2 , the sum of the following regions:
 - The area of the 4 triangles = $4(\frac{1}{2}ab) = 2ab$
 - The area of the small interior square = $(b-a)^2 = b^2 2ab + a^2$.

© Michael Frank

- Thus, $c^2 = 2ab + (b^2 - 2ab + a^2) = a^2 + b^2$.

Note: It is easy to show that the exterior and interior quadrilaterals in this construction are indeed squares, and that the side length of the internal square is indeed b-a (where b is defined as the length of the longer of the two perpendicular sides of the triangle). These steps would also need to be included in a more complete pro-

Areas in this diagram are in boldface; lengths are in a normal font weight.

Finally: Have Fun!

CompSci 102

C Michael Frank

1.16

1.14

CompSci 102

Propositional Logic (§1.1)

Propositional Logic is the logic of compound statements built from simpler statements using so-called *Boolean connectives*.

Some applications in computer science:

- Design of digital electronic circuits.
- Expressing conditions in programs.
- Queries to databases & search engines.

(ca. 281 B.C. - 205 B.C.)

CompSci 102

© Michael Frank

Examples of Propositions

- "It is raining." (In a given situation.)
- "Beijing is the capital of China." "1 + 2 = 3"

But, the following are NOT propositions:

- "Who's there?" (interrogative, question)
- "La la la la la." (meaningless interjection)
- "Just do it!" (imperative, command)
- "Yeah, I sorta dunno, whatever..." (vague)
- "1 + 2" (expression with a non-true/false value)

Definition of a Proposition

Definition: A *proposition* (denoted p, q, r, ...) is simply:

- a *statement* (*i.e.*, a declarative sentence)
 - with some definite meaning, (not vague or ambiguous)
- having a *truth value* that's either *true* (T) or *false* (F)
 - it is **never** both, neither, or somewhere "in between!"
 - However, you might not know the actual truth value,
 - and, the truth value might *depend* on the situation or context.
- Later, we will study *probability theory*, in which we assign *degrees of certainty* ("between" T and F) to propositions.

Rut for now: think True/False only!

1.18

Operators / Connectives

- An *operator* or *connective* combines one or more *operand* expressions into a larger expression. (*E.g.*, "+" in numeric exprs.)
- Unary operators take 1 operand (e.g., -3); binary operators take 2 operands (eg 3 × 4).
- *Propositional* or *Boolean* operators operate on propositions (or their truth values) instead of on numbers.

CompSci 102

© Michael Frank

1.19

1.20

Some Popular Boolean Operators

Formal Name	Nickname	<u>Arity</u>	<u>Symbol</u>
Negation operator	NOT	Unary	_
Conjunction operator	AND	Binary	٨
Disjunction operator	OR	Binary	V
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	→
Biconditional operator	IFF	Binary	\leftrightarrow

CompSci 102

© Michael Frank

The Conjunction Operator

logical conjunction.

The binary *conjunction operator* "∧" (*AND*) combines two propositions to form their

AND

1.21

E.g. If p= "I will have salad for lunch." and q= "I will have steak for dinner.", then $p \land q=$ "I will have salad for lunch **and** I will have steak for dinner."

Remember: "^" points up like an "A", and it means "AND"

CompSci 102

1.23

The Negation Operator

Conjunction Truth Table

 Note that a conjunction *p*₁ ∧ *p*₂ ∧ ... ∧ *p_n* of *n* propositions will have 2ⁿ rows in its truth table.

• Also: ¬ and ∧ operations together are sufficient to express *any* Boolean truth table!

CompSci 102

© Michael Frank

Exclusive-Or Truth Table The Exclusive Or Operator The binary exclusive-or operator " \oplus " (XOR) • Note that $p \oplus q$ means combines two propositions to form their that p is true, or q is logical "exclusive or" (exjunction?). true, but not both! p = "I will earn an A in this course," • This operation is Т F called *exclusive or*. q = "I will drop this course," Т Т Note because it **excludes** the $p \oplus q =$ "I will either earn an A in this course, difference from OR. possibility that both *p* and *q* are true. or I will drop it (but not both!)" • "¬" and "⊕" together are **not** universal. CompSci 102 © Michael Frank CompSci 102 © Michael Frank 1 29 1.30 The Implication Operator Natural Language is Ambiguous antecedent consequent The *implication* $p \rightarrow q$ states that p implies q. Note that English "or" can be ambiguous regarding the "both" case! *I.e.*, If p is true, then q is true; but if p is not "or" a "Pat is a singer or true, then q could be either true or false. F F Pat is a writer." - V *E.g.*, let p = "You study hard." q = "You will get a good grade." "Pat is a man or F Pat is a woman." - 🕀 $p \rightarrow q =$ "If you study hard, then you will get Т Т Need context to disambiguate the meaning! a good grade." (else, it could go either way) For this class, assume "or" means inclusive. © Michael Frank CompSci 102 CompSci 102 C Michael Frank 1.31 1.32

English Phrases Meaning $p \rightarrow q$ **Converse, Inverse, Contrapositive** • "*p* implies *q*" Some terminology, for an implication $p \rightarrow q$: • "*p* only if *q*" • "if *p*, then *q*" • "*p* is sufficient for *q*" • Its *converse* is: $q \rightarrow p$. • "if *p*, *q*" • "q is necessary for p" • Its *inverse* is: $\neg p \rightarrow \neg q$. • "when *p*, *q*" • "q follows from p" • Its contrapositive: $\neg q \rightarrow \neg p$. • "whenever p, q" • "q is implied by p" • One of these three has the *same meaning* • "*q* if *p*" We will see some equivalent (same truth table) as $p \rightarrow q$. Can you logic expressions later. • "*q* when *p*" figure out which? • "q whenever p" CompSci 102 © Michael Frank CompSci 102 © Michael Frank 1 37 1.38 How do we know for sure? The biconditional operator Proving the equivalence of $p \rightarrow q$ and its The *biconditional* $p \leftrightarrow q$ states that p is true *if and* only if (IFF) q is true. contrapositive using truth tables: When we say **P** if and only if **q**, we are saying that p qP says the same thing as Q. F→F **Examples**? $F \rightarrow T \mid F \rightarrow T \qquad T$ Т Truth table? $T \rightarrow F | T \rightarrow F F$ F Т $T \rightarrow T \mid F \rightarrow F$ Т CompSci 102 C Michael Frank CompSci 102 C Michael Frank 1.39 1.40

Boolean Operations Summary

• We have seen 1 unary operator (out of the 4 possible) and 5 binary operators (out of the 16 possible). Their truth tables are below.

CompSci	102
---------	-----

© Michael Frank

1.42

Some Alternative Notations

Name:	not	and	or	xor	implies	iff
Propositional logic:	Γ	^	V	\oplus	\rightarrow	\Leftrightarrow
Boolean algebra:	\overline{p}	pq	+	\oplus		
C/C++/Java (wordwise):	!	& &		! =		==
C/C++/Java (bitwise):	~	æ		^		
Logic gates:	\rightarrow	Ð	\supset	\rightarrow		

CompSci 102

1.43