Welcome!

Discrete Mathematics for Computer Science
CompSci 102
D106 LSRC
M, W 10:05-11:20

Professor: Jeffrey Forbes

CompSci 102 11

Frequently Asked Questions

® What are the prerequisites?
> CPS 6 but CPS 100 preferred
> Math 31 & 32
® How does this course fit into the curricula?
> Useful foundation for courses like Compsci 130 and 140
> Solid grounding in mathematical foundations

> Replaces requirement of Math 135 (probability), Math 124
(Combinatorics) and Math 187 (Logic)

® What is recitation? Is it required?

> Recitation is a more hands-on section where you will do
problems and discuss solutions. Your work there will be graded.

® How do keep up to date?
» Read web page regularly

> Read discussion forum regularly

CompSéi 102 . 1.2
> Read your email

Course goals

® What we want to teach
> Precise, reliable, powerful thinking
> The ability to state and prove nontrivial facts, in particular about
programs
> Mathematical foundations and ideas useful throughout CS

> Correctly read, represent and analyze various types of discrete
structures using standard notations.

® What areas
> Propositions and Proofs
> Induction
> Basics of Counting
> Arithmetic Algorithms
> Probability

» Structures

CompSci 102 13

So, what’s this class about?

What are “discrete structures” anyway?
e “Discrete” (= “discreet”!) - Composed of distinct,
separable parts. (Opposite of continuous.)
discrete:continuous :. digital:analog
o “Structures” - Objects built up from simpler objects
according to some definite pattern.

* “Discrete Mathematics” - The study of discrete,
mathematical objects and structures.

CompSci 102 © Michael Frank 14

What is Mathematics, really?

* It’s not just about numbers!
* Mathematics is much more than that:

Mathematics is, most generally, the study of
any and all absolutely certain truths about
any and all perfectly well-defined concepts.

* But, these concepts can be about numbers,
symbols, objects, images, sounds, anything!

CompSci 102 © Michael Frank 15

Discrete Structures We’ll Study

Propositions
* Predicates
Proofs
Sets
* Functions
Integers

¢ Summations

CompSci 102

Sequences

Strings

Permutations

Combinations
* Relations

Graphs

© Michael Frank 16

Relationships Between Structures

e “—” :#“Can be defined in terms of”
rograms Proof:
Groups Trees g roofs
Complex Operators
numbers Propgsitions
Graphs
Real numbers Strides
Functions g
Integers _
atural Relations Matrices
numbers Sequences

Infinite \Bits n-tuples «—vectors

ordinalsN /
Sets Not all possibilities

CompSci 102 © Michael Frank are shown here.

Some Notations We’ll Learn

-p
I P(x)

1%}
f:4—B
0,Q,0
(a;---ay),

Clmmy,-ooom,,)

CompSci 102

p®q p—=q pegq Vx P(x)
{aly"'van} ZaNyR

{x| P(x)} x&S
1S AUB A N4

i=1
n

feg |_xJ ;saa Hai

afb gcd,lem mod as= blzmod m)

AT Al B Al (")
.

R A lal, deg* (v)

© Michael Frank

1.8

Why Study Discrete Math?

* The basis of all of digital information processing is:
Discrete manipulations of discrete structures represented

in memory.
 Useful for solving the following calendar

— Scheduling cab drivers for the Olympics
— Akamai

— Formal specification of XML

» Discrete math concepts are also widely used throughout
math, science, engineering, economics, biology, etc., ...

* A generally useful tool for rational thought!

CompSci 102 © Michael Frank 19

Uses for Discrete Math in Computer Science

Database
management systems

* Advanced algorithms
& data structures

* Programming * Cryptography
language compilers & « Error correction codes
interpreters.

* Graphics & animation
algorithms, game
* Operating systems engines, efc....

» Computer networks

* Computer architecture * [le., the whole field!

CompSci 102 © Michael Frank 110

Course Outline (as per Rosen)

Logic (§1.1-4) 13. Program verification (§3.6)
Proof methods (§1.5) 14. Combinatorics (§4.1-4.4,4.6)
Set theory (§1.6-7) 15. Probability (ch. 5)

Functions (§1.8) 16. Graph Theory (ch. 8)
Number theory (§2.4-5)

Number theory apps. (§2.6)
Proof strategy (§3.1)
Sequences (§3.2)
Summations (§3.2)
Countability (§3.2)
Inductive Proofs (§3.3)
Recursion (§3.4-5)

PN R WD =

—_— = O
N o

CompSci 102 © Michael Frank 11

Topics Not Covered

1. Algorithms!
- See CompSci 130
2. Boolean circuits (ch. 10)
- See CompSci 104 and EE 151
3. Models of computing (ch. 11)
- See CompSci 140
4. Linear algebra & Matrices
- See Math 104

5. Abstract algebra (not in Rosen)
- Groups, rings, fields, vector spaces, algebras, efc.
- See Math 121

CompSci 102 © Michael Frank 112

A Proof Example

¢ Theorem: (Pythagorean Theorem Pytﬁa;g;oras of Samos

of Euclidean geometry) For any | (ca 569475BC) |

real numbers a, b, and ¢, if a and b are the
base-length and height of a right triangle,

and c is the length of its hypo-
tenuse, then a?+ b2 = 2. , c=d +b’
* Proof?
a

CompSci 102 © Michael Frank 113

Propositions

Statement that is either true or false

» Examples
“"This encryption system cannot be broken"
"My program works efficiently in all cases"

“*There are no circumstances under which I would lie
to Congress"

"It is inconceivable that our legal system would

execute an innocent person’

* A theorem is a proposition that is guaranteed by a
proof

CompSci 102 © Michael Frank 114

Proof of Pythagorean Theorem

* Proof. Consider the below diagram:

— Exterior square area = ¢2, the sum of the following regions:
 The area of the 4 triangles = 4(Y2ab) = 2ab
* The area of the small interior square = (b—a)? = b>*—2ab+a>.

— Thus, ¢? =2ab + (b>*—2ab+a*) =a*+ b*. m

Note: It is easy to show that the exterior and
interior quadrilaterals in this construction
are indeed squares, and that the side length
of the internal square is indeed b—a (where b
is defined as the length of the longer of the
two perpendicular sides of the triangle).
These steps would also need to be included
in a more complete propE

Areas in this diagram are in
boldface; lengths are in a
normal font weight.

CompSci 102 © Michael Frank

Finally: Have Fun!

YOU MAY BE RIGHT, PYTHAGORAS, b
BUT EVERYBODY'S GOING TO LAUGH

IF YOU CALL IT A "HYPOTENUSE.”

. " 2

CompSci 102 © Michael Frank 116

Propositional Logic (§1.1) Definition of a Proposition

Propositional Logic is the logic of compound Definition: A proposition (denoted p, g, r, ...) is simply:
statements built from simpler statements

using so-called Boolean connectives. R
Some applications in computer science: George Boole * having a truth value that’s either true (T) or false (F)
(1815-1864) — it is never both, neither, or somewhere “in between!”
* However, you might not know the actual truth value,

* astatement (i.e., a declarative sentence)

— with some definite meaning, (not vague or ambiguous)

» Design of digital electronic circuits.

» Expressing conditions in programs.

. . ¢ and, the truth value might depend on the situation or context.
* Queries to databases & search engines.

) Later, we will study probability theory, in which
L et we assign degrees of certainty (“between” T and

Chrysippus of Soli et
CompSci 102 © Michael Frank (ca. 281 B.C. - 205 B.C.) CompSE))Zto pI'OpQSlthIlS. © Michael Frank s
Examples of Propositions Operators / Connectives
* “ltisraining.” (Ina given situation.) An operator or connective combines one or

» “Beijing is the capital of China.” <« “1+2=3"

more operand expressions into a larger
But, the following are NOT propositions:

expression. (E.g., “+” in numeric exprs.)

* “Who’s there?” (interrogative, question)

» “Lalalalala.” (meaningless interjection) ¢ Unary operators take 1 Operand (e-g-: _3);
« “Just do it!” (imperative, command) binary operators take 2 operands (eg 3 x 4).
" “Yeah, I sorta dunno, whatever...” (vague) * Propositional or Boolean operators operate

» “l + 2” (expression with a non-true/false value) on prop ositions (OI‘ their truth Values)

instead of on numbers.

CompSci 102 © Michael Frank CompSci 102 © Michael Frank

1.19 1.20

Some Popular Boolean Operators

Formal Name Nickname | Arity | Symbol
Negation operator NOT Unary -
Conjunction operator | AND Binary A
Disjunction operator OR Binary v
Exclusive-OR operator | XOR Binary @
Implication operator IMPLIES |Binary -
Biconditional operator |IFF Binary o

CompSci 102 © Michael Frank 121

The Negation Operator

The unary negation operator “—" (NOT)
transforms a prop. into its logical negation.

E.g. If p =1 have brown hair.”
then —p = “I do not have brown hair.”

The truth table for NOT: pP|-p
T| F
F| T

CompSci 102 © Michael Frank

T := True; F :=False
“:=" means “is defined as”

1.22

The Conjunction Operator

The binary conjunction operator “A” (AND)

combines two propositions to form their
logical conjunction. AND

E.g. 1f p=“1 will have salad for lunch.” and
q="“1 will have steak for dinner.”, then pa
g="1 will have salad for lunch and

I will have steak for dinner.”

T3]

Remember: “A” points up like an “A”, and it means “Anp”

CompSci 102 © Michael Frank 123

Conjunction Truth Table

* Note that a A
conjunction P9 P q
PiAPyA .. AP, FF F
of n propositions F T F
willhave 27rows T F |F
in its truth table. T T |T

» Also: —and A operations together are suffi-
cient to express any Boolean truth table!

CompSci 102 © Michael Frank 124

The Disjunction Operator

The binary disjunction operator “v” (OR)

combines two propositions to form their
logical disjunction.

p

p="My car has a bad engine.”
g="“My car has a bad carburetor.”
pvg="“Either my car has a bad engine, or

my car has a bad carburetor.” | Afer the downward-
pointing “axe” of “v”
splits the wood, you
can take 1 piece OR
the other, or both.

Meaning is like “and/or” in English.

CompSci 102 © Michael Frank

1.25

Disjunction Truth Table

* Note that pvg means Y
: . P 49 pq
that p is true, or ¢q is F T IF
true, or both are true! N
. o F T |T| Mo
* So, this operation is difference
. . T F from AND
also called inclusive or, T T T
because it includes the

possibility that both p and ¢ are true.
“=”and “v” together are also universal.

CompSci 102 © Michael Frank 126

Nested Propositional Expressions

 Use parentheses to group sub-expressions:
“I just saw my old friend, and either he’s
grown or [’ve shrunk.” =f'A (g v)
— (fa g) vs would mean something different
— fagvs would be ambiguous

6$_|”

* By convention,
both “A” and “v”.

— —wAf means (7s)Af, not —(sAf)

takes precedence over

CompSci 102 © Michael Frank 127

A Simple Exercise

Let p="It rained last night”,
g="The sprinklers came on last night,”
r=“The lawn was wet this morning.”

Translate each of the following into English:

P = “It didn’t rain last night.”

rATp — “The lawn was wet this morning, and
it didn’t rain last nicht ”

“rvpvg= “Either the lawn wasn’t wet this

morning, or it rained last night, or

the sprinklers came on last night.”
CompSci 102 © Michael Frank

1.28

The Exclusive Or Operator Exclusive-Or Truth Table

The binary exclusive-or operator “®” (XOR) * Note that p®q means @
combines two propositions to form their that p is true, or ¢q is]12 lq: P B q
logical “exclusive or” (exjunction?). true, but not both! F T T

p = “I will earn an A in this course,” * This operation is T F T

q = “I will drop this course,” called exclusive or,

0 Sy because it excludes the T T F} ey

p @ g = “I will either earn an A in this course, i difference

or T will drop it (but not both!)” possibility that both p and ¢ are true. om OR.

° ‘C_|”

and “@®” together are not universal.

CompSci 102 © Michael Frank 129 CompSci 102 © Michael Frank

1.30

Natural Language is Ambiguous The Implication Operator

antecedggt consequent
Note that English “or” can be ambiguous The implication'p'— 'q'states that p implies g.
regarding the “both™ case!

p g p'or'g Le., If p 1s true, then q is true; but if p 1s not
“Pat 1s a singer or F F F true, then g could be either true or false.
Pat is a writer.” - V F T T E.g., let p =“You study hard.”
“Pat is a man or T F T q = “You will get a good grade.”
Pat is a woman.” - ® T T ? p — q = “If you study hard, then you will get
Need context to disambiguate the meaning! a good grade.” (else, it could go either way)

For this class, assume “or” means inclusive.

CompSci 102 © Michael Frank 131 CompSci 102 © Michael Frank

1.32

Implication Truth Table

-pfqlsfalsef)nlehen P q|p—q
p 1s true but ¢ is not true. F Fl T
* p — ¢ does not say FT T 1
that p causes ¢! T F| F}oly
* p—>gq doesmotrequire T T| T f:;i?

that p or g are ever true!
* E.g “(1=0) — pigs can fly” is TRUE!

CompSci 102 © Michael Frank 133

Examples of Implications

* “If this lecture ever ends, then the sun will
rise tomorrow.” True or False?

* “If Tuesday is a day of the week, then I am
a penguin.” True or False?

» “If 1+1=6, then Bush is president.”
True or False?

* “If the moon is made of green cheese, then
I am richer than Bill Gates.” True or False?

CompSci 102 © Michael Frank ™

Why does this seem wrong?

¢ Consider a sentence like,

— “If I wear a red shirt tomorrow, then I will win
the lottery!”

* Inlogic, we consider the sentence True so long as either |
don’t wear a red shirt, or [win the lottery.

* But, in normal English conversation, if [were to make this
claim, you would think that I was lying.
— Why this discrepancy between logic &
language?

CompSci 102 © Michael Frank 135

Resolving the Discrepancy

* In English, a sentence “if p then ¢” usually really implicitly
means something like,
— “In all possible situations, if p then ¢.”

* That is, “For p to be true and ¢ false is impossible.”
* Or, “I guarantee that no matter what, if p, then ¢.”

» This can be expressed in predicate logic as:

— “For all situations s, if p is true in situation s, then ¢
is also true in situation s”
— Formally, we could write: Vs, P(s) — QO(s)

» That sentence is logically False in our example, because for me
to wear a red shirt and for me to not win the lottery is a possible
(even if not actual) situation.

— Natural language and logic then agree with each
other.

English Phrases Meaning p — q

* “p implies ¢” * “ponlyifg”

* “if p, then ¢” » “p is sufficient for ¢”
* “ifp,q” » “g is necessary for p”
* “when p, ¢” » “g follows from p”

* “whenever p, ¢”

° ch ifp7,
° €Cq Whenp”

* “gis implied by p”
We will see some equivalent
logic expressions later.

* “g whenever p”

CompSci 102 © Michael Frank 137

Converse, Inverse, Contrapositive

Some terminology, for an implication p — g:

* Its converse is: q —p.
|p —— _|q.
* Its contrapositive:. —q — — p.

e Its inverse 1s:

One of these three has the same meaning
(same truth table) as p — ¢. Can you

figure out which?

CompSci 102 © Michael Frank

1.38

How do we know for sure?

Proving the equivalence of p — ¢ and its
contrapositive using truth tables:

P 9, "q Tp pTq "q " Tp
F>F| T » T T T
F>T| F » T T T
T-F| T ~ F F F
T-T| F - F T T

1.39

The biconditional operator

The biconditional p <> q states that p is true if and
only if (IFF) q is true.

When we say P if and only if q , we are saying that

P says the same thing as Q.
Examples?
Truth table?

CompSci 102 © Michael Frank

1.40

Biconditional Truth Table

Boolean Operations Summary

<
* p <> g means that p and ¢ P 4p 4 * We have seen 1 unary operator (out of the 4
have the same truth value. FFOT possible) and 5 binary operators (out of the
* Note this truth table is the F T F 16 possible). Their truth tables are below.
exact opposite of @’s! T F K A v ® . -
Thus, p <> g means —~(p @ q) P49 ppgqp qp—qp 9p g
* p <> g does not imply TT T FF T F F F T T
that p and ¢ are true, or that either orrrerreausTSTITe FT T F T T T F
other, or that they have a common cause. TF F F T T F F
TT F T T F T T
CompSci 102 © Michael Frank 141 CompSci 102 © Michael Frank 142
Some Alternative Notations
Name: not|and| or | xor implies| iff
Propositional logic: = | A v | @ — <~
Boolean algebra: ﬁ Pq @
C/CH++/Java (wordwise):| | [g& | || | != ==
C/C++/Java (bitwise): ~ & | A
Logic gates: o [T O[> >

CompSci 102

© Michael Frank

1.43

