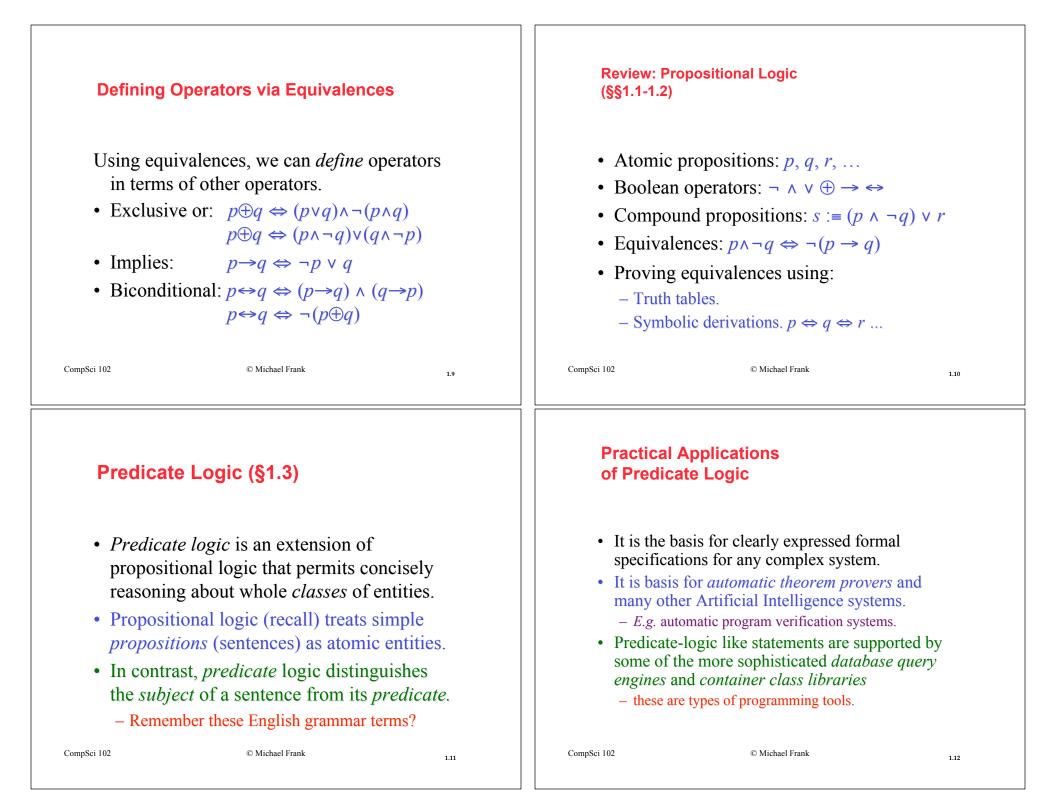


Proving Equivalence via Truth Tables	Equivalence Laws		
<i>Ex.</i> Prove that $p \lor q \Leftrightarrow \neg(\neg p \land \neg q)$.	 These are similar to the arithmetic identities you may have learned in algebra, but for propositional equivalences instead. They provide a pattern or template that can be used to match all or part of a much more complicated proposition and to find an equivalence for it. 		
CompSci 102 © Michael Frank 1.5	CompSci 102 © Michael Frank 1.6		
Equivalence Laws - Examples	More Equivalence Laws		
• Identity: $p \wedge \mathbf{T} \Leftrightarrow p p \vee \mathbf{F} \Leftrightarrow p$ • Domination: $p \vee \mathbf{T} \Leftrightarrow \mathbf{T} p \wedge \mathbf{F} \Leftrightarrow \mathbf{F}$ • Idempotent: $p \vee p \Leftrightarrow p p \wedge p \Leftrightarrow p$ • Double negation: $\neg \neg p \Leftrightarrow p$ • Commutative: $p \vee q \Leftrightarrow q \vee p p \wedge q \Leftrightarrow q \wedge p$ • Associative: $(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r) = (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	• Distributive: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ • De Morgan's: $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$ $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ • Trivial tautology/contradiction: $p \lor \neg p \Leftrightarrow \mathbf{T}$ $p \land \neg p \Leftrightarrow \mathbf{F}$ • $p \land \neg p \Leftrightarrow \mathbf{F}$		
CompSci 102 © Michael Frank	CompSci 102 © Michael Frank		



More About Predicates **Subjects and Predicates** • In the sentence "The dog is sleeping": • Convention: Lowercase variables x, y, z... denote objects/entities; uppercase variables P, Q, R... denote - The phrase "the dog" denotes the *subject* propositional functions (predicates). the *object* or *entity* that the sentence is about. • Keep in mind that the *result of applying* a predicate P to - The phrase "is sleeping" denotes the predicate- a an object x is the proposition P(x). But the predicate P property that is true of the subject. itself (e.g. P="is sleeping") is not a proposition (not a • In predicate logic, a *predicate* is modeled as a complete sentence). *function* $P(\cdot)$ from objects to propositions. - E.g. if P(x) = x is a prime number", *P*(3) is the *proposition* "3 is a prime number." - P(x) ="x is sleeping" (where x is any object). CompSci 102 © Michael Frank CompSci 102 © Michael Frank 1 14 1 1 3

Propositional Functions

- Predicate logic *generalizes* the grammatical notion of a predicate to also include propositional functions of **any** number of arguments, each of which may take **any** grammatical role that a noun can take.
 - *E.g.* let P(x,y,z) ="*x* gave *y* the grade *z*", then if x = "Mike", y = "Mary", z = "A", then P(x,y,z) = "Mike gave Mary the grade A."

Universes of Discourse (U.D.s)

- The power of distinguishing objects from predicates is that it lets you state things about *many* objects at once.
- E.g., let P(x)="x+1>x". We can then say, "For *any* number x, P(x) is true" instead of (0+1>0) ∧ (1+1>1) ∧ (2+1>2) ∧ ...
- The collection of values that a variable *x* can take is called *x*'s *universe of discourse*.

1.15

CompSci 102

© Michael Frank

Quantifier Expressions

- *Quantifiers* provide a notation that allows us to *quantify* (count) *how many* objects in the univ. of disc. satisfy a given predicate.
- " \forall " is the FOR \forall LL or *universal* quantifier. $\forall x P(x)$ means *for all* x in the u.d., *P* holds.
- "∃" is the ∃XISTS or *existential* quantifier.
 ∃x P(x) means <u>there exists</u> an x in the u.d. (that is, 1 or more) <u>such that</u> P(x) is true.

The Universal Quantifier ∀

- Example: Let the u.d. of x be parking spaces at Duke. Let P(x) be the predicate "x is full." Then the universal quantification of P(x), ∀ x P(x), is the proposition: – "All parking spaces at Duke are full." – *i.e.*, "Every parking space at Duke is full."
 - *i.e.*, "For each parking space at Duke, that space is full."

CompSci 102	© Michael Frank	1.17	CompSci 102	© Michael Frank	1.18
	stential Quantifier 3			d Bound Variables	
Let $P(x)$ Then the $x P(x)$, is - "Some - "There	e: a.d. of x be <u>parking spaces</u> a be the <i>predicate</i> "x is full." e <i>existential quantification</i> a s the <i>proposition</i> : e parking space at Duke is full." e is a parking space at Duke that ast one parking space at Duke is	, of $P(x)$, \exists t is full."	free van • A quan express variable variable	ression like $P(x)$ is said to h riable x (meaning, x is under tifier (either \forall or \exists) operate sion having one or more free es, and binds one or more of es, to produce an expression more bound variables.	fined). es on an e f those

1.19

CompSci 102

Example of Binding Nesting of Quantifiers • P(x,y) has 2 free variables, x and y. Example: Let the u.d. of *x* & *y* be people. • $\forall x P(x,y)$ has 1 free variable, and one bound variable. Let L(x,y)="x likes y" (a predicate w. 2 f.v.'s) [Which is which?] Then $\exists y L(x,y) =$ "There is someone whom x • "P(x), where x=3" is another way to bind x. • An expression with zero free variables is a bona-fide likes." (A predicate w. 1 free variable, x) (actual) proposition. Then $\forall x (\exists y L(x,y)) =$ • An expression with one or more free variables is still only "Everyone has someone whom they like." a predicate: e.g. let $Q(y) = \forall x P(x,y)$ (A with free variables.) CompSci 102 © Michael Frank CompSci 102 © Michael Frank 1.21 1.22 **Quantifier Exercise** If R(x,y)="x relies upon y," express the following in unambiguous English: $\forall x(\exists y \ R(x,y)) =$ $\exists y (\forall x R(x,y)) =$ $\exists x (\forall y R(x,y)) =$ $\forall y(\exists x R(x,y)) =$ $\forall x(\forall y R(x,y)) =$ CompSci 102 © Michael Frank 1.23