Today’s topics

» Propositional equivalences
* Predicate logic

* Reading: Sections 1.2-1.3

CompSci 102 © Michael Frank 11

Propositional Equivalence (§1.2)

Two syntactically (i.e., textually) different
compound propositions may be the
semantically identical (i.e., have the same
meaning). We call them equivalent. Learn:

» Various equivalence rules or laws.

* How to prove equivalences using symbolic
derivations.

CompSci 102 © Michael Frank 12

Tautologies and Contradictions

A tautology is a compound proposition that is
true no matter what the truth values of its
atomic propositions are!

Ex. pv =p [What is its truth table?]

A contradiction 1s a compound proposition
that is false no matter what! Ex. p A —p

[Truth table?]
Other compound props. are contingencies.

CompSci 102 © Michael Frank 13

Logical Equivalence

Compound proposition p is logically
equivalent to compound proposition ¢,
written p<>¢, IFF the compound
proposition p<>q is a tautology.

Compound propositions p and g are logically
equivalent to each other IFF p and ¢
contain the same truth values as each other
1n all rows of their truth tables.

CompSci 102 © Michael Frank 14

Proving Equivalence
via Truth Tables

Ex. Prove that pvg < —(=p A =q).

CompSci 102 © Michael Frank 15

CompSci 102 © Michael Frank

Equivalence Laws

* These are similar to the arithmetic
identities you may have learned in algebra,
but for propositional equivalences instead.

* They provide a pattern or template that can
be used to match all or part of a much more
complicated proposition and to find an
equivalence for it.

1.6

Equivalence Laws - Examples

Identity: panT<p pvFep

Domination: pvT < T paF < F

Idempotent. pvp <p pap <p

Double negation: —mp<Sp

Commutative: pvqg <> qvp pAGg <> AP

Associative: (pvq)vr < pv(gvr)
(pAg)Ar < pA(gAT)

CompSci 102 © Michael Frank 17

CompSci 102 © Michael Frank

More Equivalence Laws

» Distributive: pv(gar) < (pvg)n(pvr)
pN(gvr) < (pAg)V(pAr)

» De Morgan'’s: B
~(pAg) = —pV ~q @
~(pvq) = ~p A —q Yy

* Trivial tautology/contradiction: Augustus
pV_‘p@)T p/\—'p©F De Morgan

(1806-1871)

1.8

Defining Operators via Equivalences

Using equivalences, we can define operators
in terms of other operators.

* Exclusive or: p®g < (pvg)A—(pAg)
POq = (pA=q)V(gr—p)

* Implies: p—>q < -pVgq

 Biconditional: p<>q¢ < (p—¢q) A (g—p)
p=q = ~(p®q)

CompSci 102 © Michael Frank 19

Review: Propositional Logic

(§§1.1-1.2)

Atomic propositions: p, ¢, 7, ...

Boolean operators: = A v ® — <=
Compound propositions: s := (p A =q) vV r
Equivalences: pA—¢g < = (p — ¢q)
Proving equivalences using:

— Truth tables.
— Symbolic derivations. p < g < r ...

CompSci 102 © Michael Frank

1.10

Predicate Logic (§1.3)

» Predicate logic is an extension of
propositional logic that permits concisely
reasoning about whole c/asses of entities.

 Propositional logic (recall) treats simple
propositions (sentences) as atomic entities.

* In contrast, predicate logic distinguishes
the subject of a sentence from its predicate.

— Remember these English grammar terms?

CompSci 102 © Michael Frank 11

Practical Applications
of Predicate Logic

« It is the basis for clearly expressed formal

specifications for any complex system.

* It is basis for automatic theorem provers and

many other Artificial Intelligence systems.
— FE.g. automatic program verification systems.

» Predicate-logic like statements are supported by

CompSci 102

some of the more sophisticated database query
engines and container class libraries
— these are types of programming tools.

© Michael Frank

112

Subjects and Predicates

* In the sentence “The dog is sleeping”:

— The phrase “the dog” denotes the subject -
the object or entity that the sentence is about.

— The phrase “is sleeping” denotes the predicate- a
property that is true of the subject.
* In predicate logic, a predicate is modeled as a
function P(+) from objects to propositions.

— P(x) =“x is sleeping” (where x is any object).

CompSci 102 © Michael Frank 113

More About Predicates

* Convention: Lowercase variables x, y, z... denote
objects/entities; uppercase variables P, O, R... denote
propositional functions (predicates).

» Keep in mind that the result of applying a predicate P to
an object x is the proposition P(x). But the predicate P
itself (e.g. P="is sleeping”) is not a proposition (not a
complete sentence).

— E.g. if P(x) = “x is a prime number”,
P(3) is the proposition “3 is a prime number.”

CompSci 102 © Michael Frank 114

Propositional Functions

* Predicate logic generalizes the grammatical
notion of a predicate to also include
propositional functions of any number of
arguments, each of which may take any
grammatical role that a noun can take.

— E.g. let P(x,y,z) = “x gave y the grade z”, then if
x=“Mike”, y="“Mary”, z=“A”, then P(x,y,z) =
“Mike gave Mary the grade A.”

CompSci 102 © Michael Frank 115

Universes of Discourse (U.D.s)

» The power of distinguishing objects from
predicates is that it lets you state things
about many objects at once.

* E.g., let P(x)="x+1>x". We can then say,
“For any number x, P(x) is true” instead of
(0+1>0) A (1+1>1) A (2+1>2) A ...

e The collection of values that a variable x
can take is called x’s universe of discourse.

CompSci 102 © Michael Frank 116

Quantifier Expressions

* Quantifiers provide a notation that allows
us to quantify (count) how many objects in
the univ. of disc. satisfy a given predicate.

* “¥” is the FORVLL or universal quantifier.
Vx P(x) means for all X in the u.d., P holds.

» “3” is the AXISTS or existential quantifier.
dx P(x) means there exists an x in the u.d.
(that is, 1 or more) such that P(x) is true.

CompSci 102 © Michael Frank 117

The Universal Quantifier V

* Example:
Let the u.d. of x be parking spaces at Duke.
Let P(x) be the predicate “x is full.”
Then the universal quantification of P(x), ¥V
x P(x), is the proposition:

— “All parking spaces at Duke are full.”
— i.e., “Every parking space at Duke is full.”

— ie., “For each parking space at Duke, that space is full.”

CompSci 102 © Michael Frank 118

The Existential Quantifier 3

* Example:
Let the u.d. of x be parking spaces at Duke.
Let P(x) be the predicate “x is full.”
Then the existential quantification of P(x), 3
x P(x), is the proposition:

— “Some parking space at Duke is full.”
— “There is a parking space at Duke that is full.”
— “At least one parking space at Duke is full.”

CompSci 102 © Michael Frank 119

Free and Bound Variables

» An expression like P(x) is said to have a
free variable x (meaning, x is undefined).
A quantifier (either V or J) operates on an

expression having one or more free
variables, and binds one or more of those
variables, to produce an expression having
one or more bound variables.

CompSci 102 © Michael Frank 120

Example of Binding

* P(x,y) has 2 free variables, x and y.

* Vx P(x,y) has 1 free variable, and one bound variable.
[Which is which?]

* “P(x), where x=3" is another way to bind x.

* An expression with zero free variables is a bona-fide
(actual) proposition.

* An expression with one or more free variables is still only
a predicate: e.g. let O(v) = Vx P(x,)

CompSci 102 © Michael Frank 121

Nesting of Quantifiers

Example: Let the u.d. of x & y be people.

Let L(x,y)="x likes y”’ (a predicate w. 2 f.v.’s)
Then Jy L(x,y) = “There is someone whom x
likes.” (A predicate w. 1 free variable, x)

Then Vx (Ay L(x,y)) =
“Everyone has someone whom they like.”
(A with free variables.)

CompSci 102 © Michael Frank 122

Quantifier Exercise

If R(x,y)="“x relies upon y,” express the
following in unambiguous English:

Vx(3y R(x.y))=
I(Vx R(x,y))=
Ax(Vy R(x,y))=
Vy(3x R(x,y))=
Vx(Vy R(x,y))=

CompSci 102 © Michael Frank 123

