Today's topics

- DNF
- Predicate logic: Nested Quantifiers
- Reading: Minesweeper notes, Section 1.4

Game Theoretic Semantics

- Thinking in terms of a competitive game can help you tell whether a proposition with nested quantifiers is true.
- The game has two players, both with the same knowledge:
- Verifier: Wants to demonstrate that the proposition is true.
- Falsifier: Wants to demonstrate that the proposition is false.
- The Rules of the Game "Verify or Falsify":
- Read the quantifiers from left to right, picking values of variables.
- When you see " \forall ", the falsifier gets to select the value.
- When you see " \exists ", the verifier gets to select the value.
- If the verifier can always win, then the proposition is true.
- If the falsifier can always win, then it is false.

Natural language is ambiguous!

- "Everybody likes somebody."
- For everybody, there is somebody they like,
- $\forall x \exists y \operatorname{Likes}(x, y)$
- or, there is somebody (a popular person) whom everyone likes?
- $\exists y \forall x \operatorname{Likes}(x, y)$
- "Somebody likes everybody."
- Same problem: Depends on context, emphasis.

Let's Play, "Verify or Falsify!"

Let $B(x, y): \equiv$ " x 's birthday is followed within 7 days
Suppose I claim that among you:
$\forall x \exists y B(x, y)$
Your turn, as falsifier:
You pick any $x \rightarrow$ (so-and-so)
$B($ so-and-so, $y)$
My turn, as verifier:
I pick any $y \rightarrow$ (such-and-such)
by y 's birthday."

- Let's play it in class.
- Who wins this game?
- What if I switched the quantifiers, and I
claimed that
$\exists y \forall x B(x, y)$?
Who wins in that case?

Still More Conventions

- Sometimes the universe of discourse is restricted within the quantification, e.g.,
- $\forall x>0 P(x)$ is shorthand for
"For all x that are greater than zero, $P(x)$."
$=\forall x(x>0 \rightarrow P(x))$
$-\exists x>0 P(x)$ is shorthand for
"There is an x greater than zero such that $P(x)$."
$=\exists x(x>0 \wedge P(x))$

Quantifier Equivalence Laws

- Definitions of quantifiers: If u.d.=a,b,c,...
$\forall x P(x) \Leftrightarrow P(\mathrm{a}) \wedge P(\mathrm{~b}) \wedge P(\mathrm{c}) \wedge \ldots$
$\exists x P(x) \Leftrightarrow P(\mathrm{a}) \vee P(\mathrm{~b}) \vee P(\mathrm{c}) \vee$
- From those, we can prove the laws:
$\forall x P(x) \Leftrightarrow \neg \exists x \neg P(x)$
$\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$
- Which propositional equivalence laws can be used to prove this?

More to Know About Binding

- $\forall x \exists x P(x)-x$ is not a free variable in $\exists x P(x)$, therefore the $\forall x$ binding isn't used.
- $(\forall x P(x)) \wedge \mathrm{Q}(x)$ - The variable x is outside of the scope of the $\forall x$ quantifier, and is therefore free. Not a complete proposition!
- $(\forall x P(x)) \wedge(\exists x \mathrm{Q}(x))-$ This is legal, because there are 2 different x 's!

More Equivalence Laws

- $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$ $\exists x \exists y P(x, y) \Leftrightarrow \exists y \exists x P(x, y)$
- $\forall x(P(x) \wedge Q(x)) \Leftrightarrow(\forall x P(x)) \wedge(\forall x Q(x))$ $\exists x(P(x) \vee Q(x)) \Leftrightarrow(\exists x P(x)) \vee(\exists x Q(x))$
- Exercise:

See if you can prove these yourself.

- What propositional equivalences did you use?

More Notational Conventions

- Quantifiers bind as loosely as needed:
parenthesize $\forall x P(x) \wedge \mathrm{Q}(x)$
- Consecutive quantifiers of the same type can be combined: $\forall x \forall y \forall z P(x, y, z) \Leftrightarrow$ $\forall x, y, z P(x, y, z)$ or even $\forall x y z P(x, y, z)$
- All quantified expressions can be reduced to the canonical alternating form $\forall x_{1} \exists x_{2} \forall x_{3}$ $\exists x_{4} \ldots P\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)$

Some Number Theory Examples

- Let u.d. $=$ the natural numbers $0,1,2, \ldots$
- "A number x is even, $E(x)$, if and only if it is equal to 2 times some other number."
- "A number is prime, $P(x)$, iff it's greater than 1 and it isn't the product of any two non-unity numbers."

Defining New Quantifiers

As per their name, quantifiers can be used to express that a predicate is true of any given quantity (number) of objects.
Define \exists ! $x P(x)$ to mean " $P(x)$ is true of exactly one x in the universe of discourse."
$\exists!x P(x) \Leftrightarrow \exists x(P(x) \wedge \neg \exists y(P(y) \wedge y \neq x))$
"There is an x such that $P(x)$, where there is no y such that $\mathrm{P}(y)$ and y is other than x."

Goldbach's Conjecture (unproven)

Using $E(x)$ and $P(x)$ from previous slide,
$\forall E(x>2): \exists P(p), P(q): p+q=x$
or, with more explicit notation:

$$
\begin{aligned}
& \forall x[x>2 \wedge E(x)] \rightarrow \\
& \quad \exists p \exists q P(p) \wedge P(q) \wedge p+q=x .
\end{aligned}
$$

"Every even number greater than 2
is the sum of two primes."

Calculus Example

- One way of precisely defining the calculus concept of a limit, using quantifiers:
$\left(\lim _{x \rightarrow a} f(x)=L\right) \Leftrightarrow$

Deduction Example Continued

Some valid conclusions you can draw:
$H(\mathrm{~s}) \rightarrow M(\mathrm{~s}) \quad$ [Instantiate universal.] If Socrates is human then he is mortal.
$\neg H(\mathrm{~s}) \vee M(\mathrm{~s}) \quad$ Socrates is inhuman or mortal.
$H(\mathrm{~s}) \wedge(\neg H(\mathrm{~s}) \vee M(\mathrm{~s}))$
Socrates is human, and also either inhuman or mortal.
$(H(\mathrm{~s}) \wedge \neg H(\mathrm{~s})) \vee(H(\mathrm{~s}) \wedge M(\mathrm{~s})) \quad$ [Apply distributive law.]
$\mathbf{F} \vee(H(\mathrm{~s}) \wedge M(\mathrm{~s})) \quad[T r i v i a l$ contradiction.]
$H(\mathrm{~s}) \wedge M(\mathrm{~s})$
$M(\mathrm{~s})$
[Use identity law.]
Socrates is mortal.

Deduction Example

- Definitions:
$\mathrm{s}: \equiv$ Socrates (ancient Greek philosopher);
$H(x): \equiv$ " x is human";
$M(x): \equiv$ " x is mortal".
- Premises:
$H(\mathrm{~s})$
Socrates is human.
$\forall x H(x) \rightarrow M(x) \quad$ All humans are mortal.

CompSci 102

Another Example

- Definitions: $H(x): \equiv$ " x is human"; $M(x): \equiv$ " x is mortal"; $G(x): \equiv$ " x is a god"
- Premises:
- $\forall x H(x) \rightarrow M(x)$ ("Humans are mortal") and
$-\forall x G(x) \rightarrow \neg M(x)$ ("Gods are immortal").
- Show that $\neg \exists x(H(x) \wedge G(x))$
("No human is a god.")

The Derivation

- $\forall x H(x) \rightarrow M(x)$ and $\forall x G(x) \rightarrow \neg M(x)$.
- $\forall x \neg M(x) \rightarrow \neg H(x) \quad$ [Contrapositive.]
- $\forall x[G(x) \rightarrow \neg M(x)] \wedge[\neg M(x) \rightarrow \neg H(x)]$
- $\forall x G(x) \rightarrow \neg H(x) \quad$ [Transitivity of \rightarrow.]
- $\forall x \neg G(x) \vee \neg H(x) \quad$ [Definition of \rightarrow.]
- $\forall x \neg(G(x) \wedge H(x)) \quad$ [DeMorgan's law.]
- $\neg \exists x G(x) \wedge H(x) \quad$ [An equivalence law.]

End of §1.3-1.4, Predicate Logic

- From these sections you should have learned:
- Predicate logic notation \& conventions
- Conversions: predicate logic \leftrightarrow clear English
- Meaning of quantifiers, equivalences
- Simple reasoning with quantifiers
- Upcoming topics:
- Introduction to proof-writing
- Then: Set theory -
- a language for talking about collections of objects.

