Today's topics

- Sets
- Definitions
- Operations
- Proving Set Identities
- Reading: Sections 1.6-1.7
- Upcoming
- Functions

Naïve set theory

- Basic premise: Any collection or class of objects (elements) that we can describe (by any means whatsoever) constitutes a set.
- But, the resulting theory turns out to be logically inconsistent!
- This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the axioms of the theory!
- \therefore The conjunction of the axioms is a contradiction!
- This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) "proved" by contradiction!
- More sophisticated set theories fix this problem.

Introduction to Set Theory (§1.6)

- A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- All of mathematics can be defined in terms of some form of set theory (using predicate logic).

Basic notations for sets

- For sets, we'll use variables S, T, U, \ldots
- We can denote a set S in writing by listing all of its elements in curly braces:
$-\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition $P(x)$ over any universe of discourse, $\{x \mid P(x)\}$ is the set of all x such that $P(x)$.

Basic properties of sets

- Sets are inherently unordered:
- No matter what objects a, b, and c denote,

$$
\begin{aligned}
\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} & =\{\mathrm{a}, \mathrm{c}, \mathrm{~b}\} \\
\{\mathrm{b}, \mathrm{c}, \mathrm{a}\} & =\{\mathrm{b}, \mathrm{a}, \mathrm{c}\}= \\
\mathrm{c}, \mathrm{~b}, \mathrm{~b}\} & =\{\mathrm{c}, \mathrm{~b}, \mathrm{a}\} .
\end{aligned}
$$

- All elements are distinct (unequal); multiple listings make no difference!
- If $\mathrm{a}=\mathrm{b}$, then $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{\mathrm{a}, \mathrm{c}\}=\{\mathrm{b}, \mathrm{c}\}=$ $\{\mathrm{a}, \mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{c}, \mathrm{c}\}$.
- This set contains (at most) 2 elements!

Infinite Sets

- Conceptually, sets may be infinite (i.e., not finite, without end, unending).
- Symbols for some special infinite sets:
$\mathbf{N}=\{0,1,2, \ldots\}$ The Natural numbers.
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ The \mathbf{Z} ntegers.
$\mathbf{R}=$ The "Real" numbers, such as 374.1828471929498181917281943125...
 is also often used for these special number sets.
- Infinite sets come in different sizes!

Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set $\{1,2,3,4\}=$
$\{x \mid x$ is an integer where $x>0$ and $x<5\}=$
$\{x \mid x$ is a positive integer whose square
is >0 and $<25\}$

9

Basic Set Relations: Member of

- $x \in S$ (" x is in S ") is the proposition that object x is an \in lement or member of set S.
- e.g. $3 \in \mathbf{N}$, " $\mathrm{a} " \in\{x \mid x$ is a letter of the alphabet $\}$
- Can define set equality in terms of \in relation: $\forall S, T: S=T \leftrightarrow(\forall x: x \in S \leftrightarrow x \in T)$
"Two sets are equal iff they have all the same members."
- $x \notin S: \equiv \neg(x \in S) \quad$ " x is not in S "

Subset and Superset Relations

- $S \subseteq T$ (" S is a subset of T ") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x(x \in S \rightarrow x \in T)$
- $\varnothing \subseteq S, S \subseteq S$.
- $S \supseteq T$ (" S is a superset of T ") means $T \subseteq S$.
- Note $S=T \Leftrightarrow S \subseteq T \wedge S \supseteq T$.
- $S \mp T$ means $\neg(S \subseteq T)$, i.e. $\exists x(x \in S \wedge x \notin T)$

The Empty Set

- \varnothing ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\varnothing=\{ \}=\{x \mid$ False $\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x$: $x \in \varnothing$.

Proper (Strict) Subsets \& Supersets

- $S \subset T$ (" S is a proper subset of T ") means that $S \subseteq T$ but $T \mp S$. Similar for $S \supset T$.

Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S=\{x \mid x \subseteq\{1,2,3\}\}$ then $S=\{\varnothing$,

$$
\begin{aligned}
& \{1\},\{2\},\{3\}, \\
& \{1,2\},\{1,3\},\{2,3\}, \\
& \{1,2,3\}\}
\end{aligned}
$$

- Note that $1 \neq\{1\} \neq\{\{1\}\}$!!!!

The Power Set Operation

- The power $\operatorname{set} \mathrm{P}(S)$ of a set S is the set of all subsets of $S . \mathrm{P}(S): \equiv\{x \mid x \subseteq S\}$.
- E.g. $\mathrm{P}(\{\mathrm{a}, \mathrm{b}\})=\{\varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$.
- Sometimes $\mathrm{P}(S)$ is written $\mathbf{2}^{S}$.

Note that for finite $S, \quad|\mathrm{P}(S)|=2^{|S|}$.

- It turns out $\forall S:|\mathrm{P}(S)|>|S|$, e.g. $|\mathrm{P}(\mathbf{N})|>|\mathbf{N}|$.

There are different sizes of infinite sets!

Naïve Set Theory is Inconsistent

- There are some naïve set descriptions that lead to pathological structures that are not well-defined.
- (That do not have self-consistent properties.)
- These "sets" mathematically cannot exist.
- E.g. let $S=\{x \mid x \notin x\}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don't worry about it!

Ordered n-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbf{N}$, an ordered n-tuple or a sequence or list of length n is written $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Its first element is a_{1}, etc.
- Note that $(1,2) \neq(2,1) \neq(2,1,1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, \ldots, n-tuples.

Review of §1.6

- Sets $S, T, U \ldots$ Special sets $\mathbf{N}, \mathbf{Z}, \mathbf{R}$.
- Set notations $\{\mathrm{a}, \mathrm{b}, \ldots\},\{x \mid P(x)\} \ldots$
- Set relation operators $x \in S, S \subseteq T, S \supseteq T, S=T$, $S \subset T, S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|, \mathrm{P}(S), S \times T$.
- Next up: §1.5: More set ops: $\cup, \cap,-$.

Start §1.7: The Union Operator

- For sets A, B, theirUnion $A \cup B$ is the set containing all elements that are either in A, or ("v") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B=\{x \mid x \in A \vee x \in B\}$.
- Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset):
$\forall A, B:(A \cup B \supseteq A) \wedge(A \cup B \supseteq B)$

The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and (" \wedge ") in B.
- Formally, $\forall A, B: A \cap B=\{x \mid x \in A \wedge x \in B\}$.
- Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset):
$\forall A, B:(A \cap B \subseteq A) \wedge(A \cap B \subseteq B)$

Union Examples

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cup\{2,3\}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, 2,3\}$
- $\{2,3,5\} \cup\{3,5,7\}=\{2,3,5,3,5,7\}=\{2,3,5,7\}$

Think "The United States of America includes every person who worked in any U.S. state last year." (This is how the IRS sees it...)

CompSci 102
© Michael Frank

Intersection Examples

- $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \cap\{2,3\}=$ \qquad
- $\{2,4,6\} \cap\{3,4,5\}=$ \qquad

Think "The intersection of Main St. and 9th St. is just that part of the road surface that lies on both streets."

Disjointedness

- Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. $(A \cap B=\varnothing)$
- Example: the set of even integers is disjoint with the set of odd integers.

Set Difference

- For sets A, B, the difference of A and B, written $A-B$, is the set of all elements that are in A but not B. Formally:

$$
\begin{aligned}
A-B & : \equiv\{x \mid x \in A \wedge \mathrm{x} \notin B\} \\
& =\{x \mid \neg(x \in A \rightarrow x \in B)\}
\end{aligned}
$$

- Also called:

The complement of B with respect to A.

Inclusion-Exclusion Principle

- How many elements are in $A \cup B$?

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

- Example: How many students are on our class email list? Consider set $E=I \cup M$, $I=\{s \mid s$ turned in an information sheet $\}$ $M=\{s \mid s$ sent the TAs their email address $\}$
- Some students did both!

$$
|E|=|I \cup M|=|I|+|M|-|I \cap M|
$$

Set Difference Examples

- $\{1,2,3,4,5,6\}-\{2,3,5,7,9,11\}=$
- $\mathbf{Z}-\mathbf{N}=\{\ldots,-1,0,1,2, \ldots\}-\{0,1, \ldots\}$
$=\{x \mid x$ is an integer but not a nat. \# $\}$
$=\{x \mid x$ is a negative integer $\}$
$=\{\ldots,-3,-2,-1\}$

Set Difference - Venn Diagram

- $A-B$ is what's left after B
"takes a bite out of A "

More on Set Complements

- An equivalent definition, when U is clear:

DeMorgan's Law for Sets

- Exactly analogous to (and provable from) DeMorgan's Law for propositions.

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Method 1: Mutual subsets

Example: Show $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.

- Part 1: Show $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
- Assume $x \in A \cap(B \cup C)$, \& show $x \in(A \cap B) \cup(A \cap C)$.
- We know that $x \in A$, and either $x \in B$ or $x \in C$.
- Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in(A \cap B) \cup(A \cap C)$.
- Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in(A \cap B) \cup(A \cap C)$
- Therefore, $x \in(A \cap B) \cup(A \cap C)$.
- Therefore, $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
- Part 2: Show $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$. ...

Membership Table Example

Prove $(A \cup B)-B=A-B$.

A	B	$A^{\cup} B$	$\left(A^{\prime}\right)^{-} B$	$A^{-} B$
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	0	0

Review of §1.6-1.7

- Sets $S, T, U \ldots$ Special sets $\mathbf{N}, \mathbf{Z}, \mathbf{R}$.
- Set notations $\{\mathrm{a}, \mathrm{b}, \ldots\},\{x \mid P(x)\} \ldots$
- Relations $x \in S, S \subseteq T, S \supseteq T, S=T, S \subset T, S \supset T$.
- Operations $|S|, \mathrm{P}(S), \times, \cup, \cap,-\bar{S}$
- Set equality proof techniques:
- Mutual subsets.
- Derivation using logical equivalences.

Membership Table Exercise

Prove $(A \cup B)-C=(A-C) \cup(B-C)$.

$A B C{ }_{A} \cup_{B}$	$\left.{ }_{(A} \cup_{B}\right)^{-}-C$	A^{-C}	B^{-C}	$\left(A^{-} C\right){ }^{\cup}\left(B^{-} C\right)$
000				
001				
010				
011				
100				
101				
110				
111				

CompSci 102

Generalized Unions \& Intersections

- Since union \& intersection are commutative and associative, we can extend them from operating on ordered pairs of sets (A, B) to operating on sequences of sets $\left(A_{1}, \ldots, A_{n}\right)$, or even on unordered sets of sets,
$X=\{A \mid P(A)\}$.

Generalized Union

- Binary union operator: $A \cup B$
- n-ary union:
$A \cup A_{2} \cup \ldots \cup A_{n}: \equiv\left(\left(\ldots\left(\left(A_{1} \cup A_{2}\right) \cup \ldots\right) \cup A_{n}\right)\right.$
(grouping \& order is irrelevant)
- "Big U" notation: $\bigcup_{i=1}^{n} A_{i}$
- Or for infinite sets of sets: $\bigcup_{A \in X} A$

Representations

- A frequent theme of this course will be methods of representing one discrete structure using another discrete structure of a different type.
- E.g., one can represent natural numbers as
- Sets: $\mathbf{0}: \equiv \varnothing, \mathbf{1}: \equiv\{\mathbf{0}\}, \mathbf{2}: \equiv\{\mathbf{0}, \mathbf{1}\}, \mathbf{3}: \equiv\{\mathbf{0}, \mathbf{1 , 2}\}, \ldots$
- Bit strings: $\mathbf{0}: \equiv 0, \mathbf{1}: \equiv 1, \mathbf{2}: \equiv 10, \mathbf{3}: \equiv 11, \mathbf{4}: \equiv 100, \ldots$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection:
$A_{1} \cap A_{2} \cap \ldots \cap A_{n} \equiv\left(\left(\ldots\left(\left(A_{1} \cap A_{2}\right) \cap \ldots\right) \cap A_{n}\right)\right.$ (grouping \& order is irrelevant)
- "Big Arch" notation:

- Or for infinite sets of dẻts:

CompSci 102

Representing Sets with Bit Strings

For an enumerable u.d. U with ordering x_{1}, x_{2}, \ldots, represent a finite set $S \subseteq U$ as the finite bit string $\mathrm{B}=b_{1} b_{2} \ldots b_{n}$ where $\forall i: x_{i} \in S \leftrightarrow\left(i<n \wedge b_{i}=1\right)$.
E.g. $U=\mathbf{N}, S=\{2,3,5,7,11\}, \mathrm{B}=001101010001$.

In this representation, the set operators
" \cup ", " \cap ", """ are implemented directly by bitwise OR, AND, NOT!

