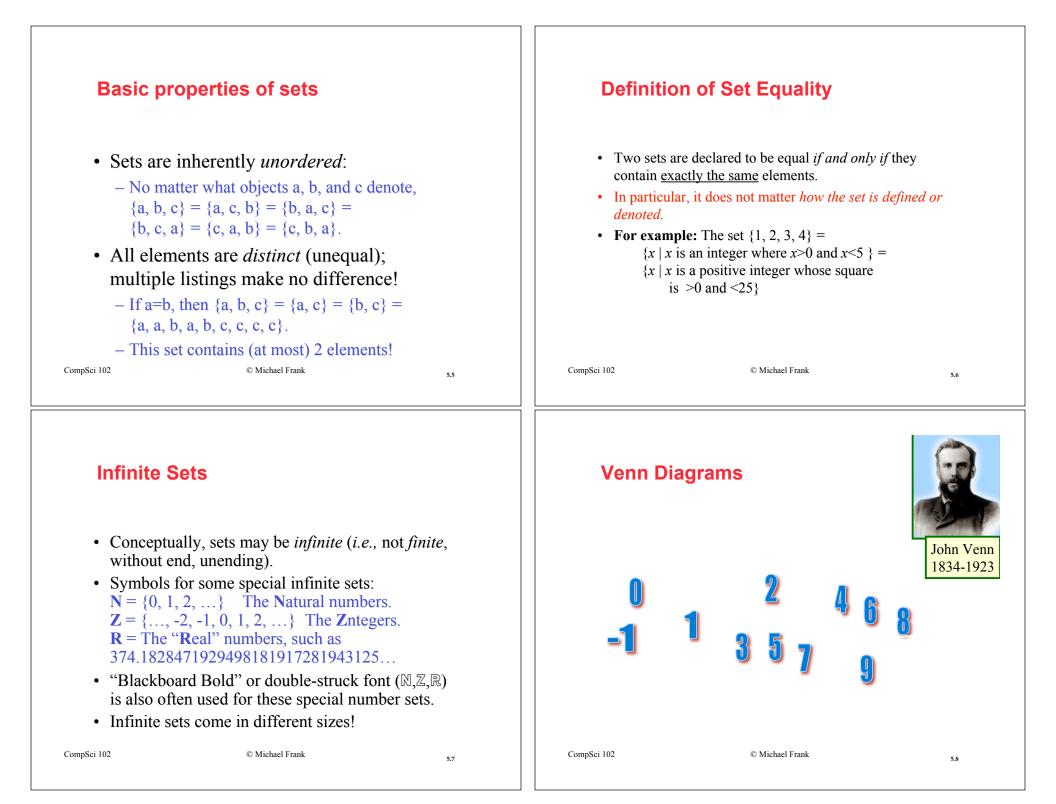
Today's topics	Introduction to Set Theory (§1.6)			
 Sets Definitions Operations Proving Set Identities Reading: Sections 1.6-1.7 Upcoming Functions 	 A set is a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects. Set theory deals with operations between, relations among, and statements about sets. Sets are ubiquitous in computer software systems. All of mathematics can be defined in terms of some form of set theory (using predicate logic). 			
CompSci 102 © Michael Frank 5.1	CompSci 102 © Michael Frank 5.2			
Naïve set theory	Basic notations for sets			
 Basic premise: Any collection or class of objects (<i>elements</i>) that we can <i>describe</i> (by any means whatsoever) constitutes a set. But, the resulting theory turns out to be <i>logically inconsistent</i>! This means, there exist naïve set theory propositions <i>p</i> such that you can prove that both <i>p</i> and ¬<i>p</i> follow logically from the axioms of the theory! ∴ The conjunction of the axioms is a contradiction! This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) "proved" by contradiction! More sophisticated set theories fix this problem. 	 For sets, we'll use variables S, T, U, We can denote a set S in writing by listing all of its elements in curly braces: {a, b, c} is the set of whatever 3 objects are denoted by a, b, c. Set builder notation: For any proposition P(x) over any universe of discourse, {x P(x)} is the set of all x such that P(x). 			
CompSci 102 © Michael Frank 5.3	CompSci 102 © Michael Frank 5.4			



Basic Set Relations: Member of The Empty Set • $x \in S$ ("x is in S") is the proposition that • \emptyset ("null", "the empty set") is the unique object x is an $\in lement$ or member of set S. set that contains no elements whatsoever. $-e.g. \exists \in \mathbb{N}, "a" \in \{x \mid x \text{ is a letter of the alphabet} \}$ • $\emptyset = \{\} = \{x | False\}$ - Can define set equality in terms of \in relation: • No matter the domain of discourse, $\forall S,T: S=T \Leftrightarrow (\forall x: x \in S \Leftrightarrow x \in T)$ we have the axiom $\neg \exists x : x \in \emptyset$ "Two sets are equal iff they have all the same members " • $x \notin S := \neg (x \in S)$ "*x* is not in *S*" CompSci 102 © Michael Frank CompSci 102 © Michael Frank 5.10 5.9 Subset and Superset Relations **Proper (Strict) Subsets & Supersets** • $S \subseteq T$ ("S is a subset of T") means that every • $S \subseteq T$ ("S is a proper subset of T") means that $S \subseteq T$ but $T \subseteq S$. Similar for $S \supset T$. element of S is also an element of T. • $S \subseteq T \Leftrightarrow \forall x \ (x \in S \rightarrow x \in T)$ Example: • $\emptyset \subseteq S, S \subseteq S$. $\{1,2\} \subset$ {1,2,3} • $S \supseteq T$ ("S is a superset of T") means $T \subseteq S$. • Note $S=T \Leftrightarrow S \subseteq T \land S \supseteq T$. • $S \subseteq T$ means $\neg (S \subseteq T)$, *i.e.* $\exists x (x \in S \land x \notin T)$ Venn Diagram equivalent of $S \subseteq T$ CompSci 102 C Michael Frank CompSci 102 C Michael Frank 5.11 5.12

Sets Are Objects, Too! **Cardinality and Finiteness** • The objects that are elements of a set may • |S| (read "the *cardinality* of S") is a measure *themselves* be sets. of how many different elements S has. • *E.g.*, $|\emptyset|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, • *E.g.* let $S = \{x \mid x \subseteq \{1,2,3\}\}$ then $S = \{\emptyset, \}$ $|\{\{1,2,3\},\{4,5\}\}| =$ • If $|S| \in \mathbb{N}$, then we say S is *finite*. $\{1,2\}, \{1,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{2,3\}, \{3,3\},$ Otherwise, we say S is *infinite*. $\{1,2,3\}\}$ • What are some infinite sets we've seen? • Note that $1 \neq \{1\} \neq \{\{1\}\} !!!!!$ CompSci 102 © Michael Frank CompSci 102 © Michael Frank 5.14 The Power Set Operation **Review: Set Notations So Far** • The *power set* P(S) of a set S is the set of • Variable objects x, y, z; sets S, T, U. all subsets of S. $P(S) := \{x \mid x \subseteq S\}$. • Literal set {a, b, c} and set-builder $\{x|P(x)\}$. • *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$ • \in relational operator, and the empty set \emptyset . • Sometimes P(S) is written 2^{S} . • Set relations =, \subseteq , \supseteq , \subset , \supset , $\not\subset$, etc. Note that for finite S, $|\mathbf{P}(S)| = 2^{|S|}$. • Venn diagrams. • It turns out $\forall S : |\mathbf{P}(S)| > |S|$, e.g. $|\mathbf{P}(\mathbf{N})| > |\mathbf{N}|$. • Cardinality |S| and infinite sets N, Z, R. *There are different sizes of infinite sets*! • Power sets P(S).

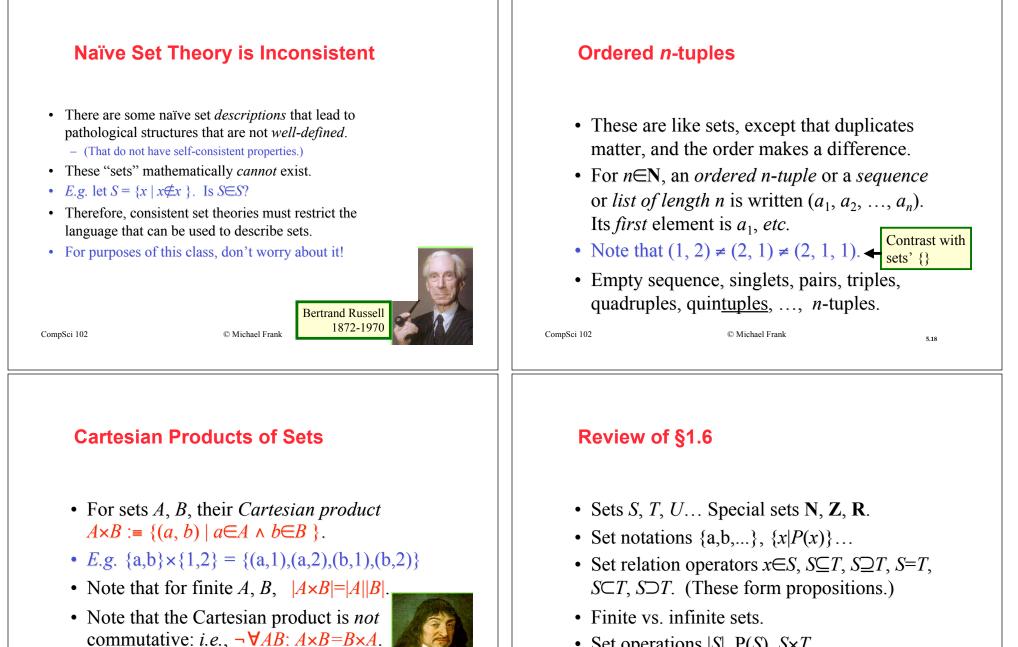
CompSci 102

5.15

CompSci 102

© Michael Frank

5.16



- Set operations |S|, P(S), $S \times T$.
- Next up: §1.5: More set ops: \cup , \cap , –.

CompSci 102

C Michael Frank

5.20

CompSci 102

C Michael Frank

• Extends to $A_1 \times A_2 \times \ldots \times A_n \ldots$

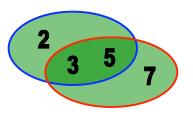
René Descartes (1596 - 1650)

Start §1.7: The Union Operator

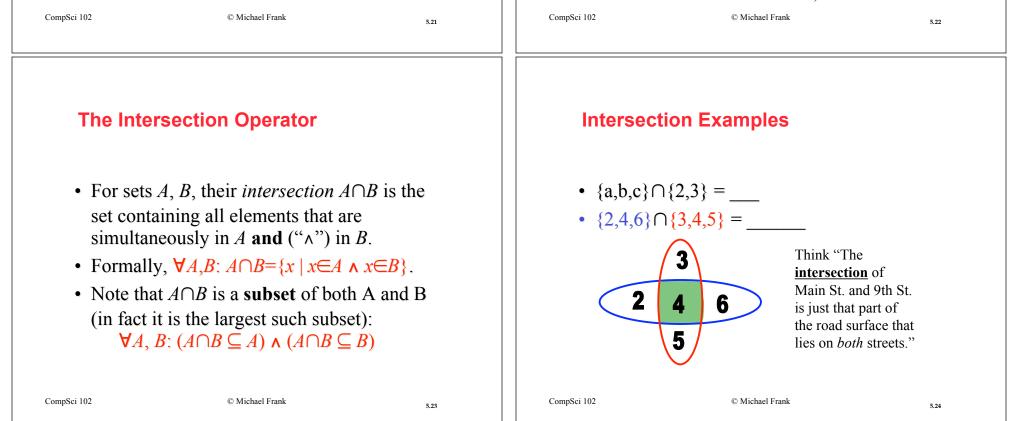
- For sets A, B, their Union A∪B is the set containing all elements that are either in A, or ("v") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that A∪B is a superset of both A and B (in fact, it is the smallest such superset):
 ∀A, B: (A∪B⊇A) ∧ (A∪B⊇B)

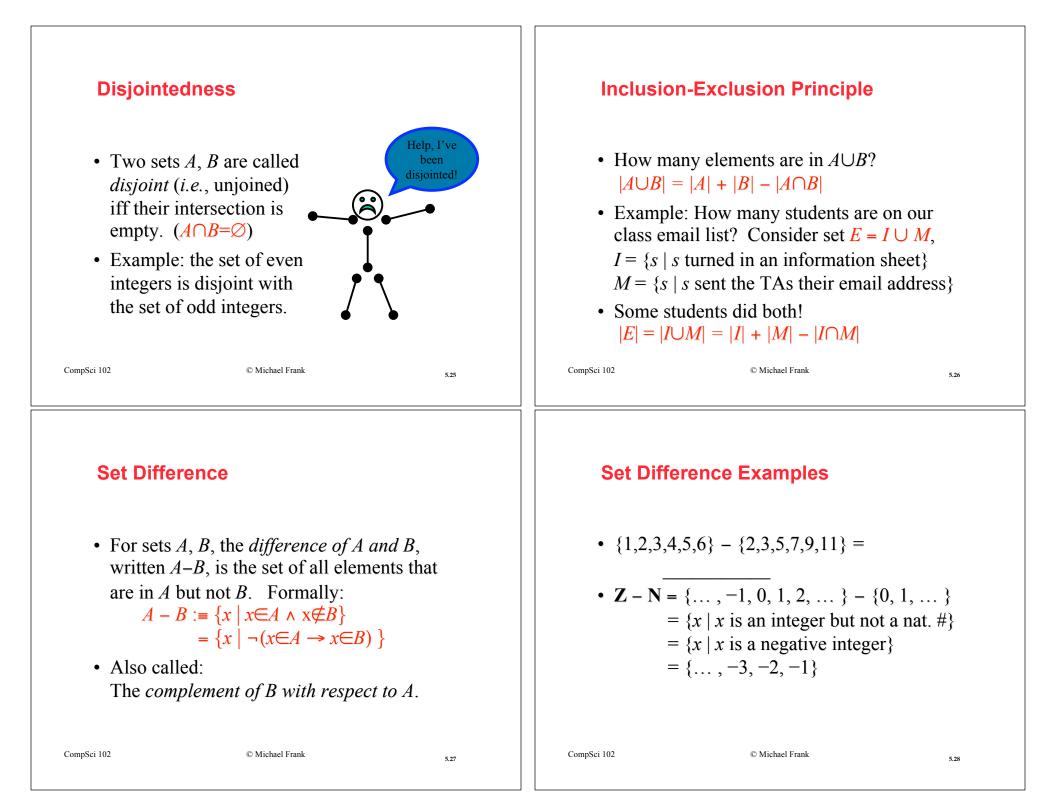
Union Examples {a,b,c}∪{2,3} = {a,b,c,2,3}

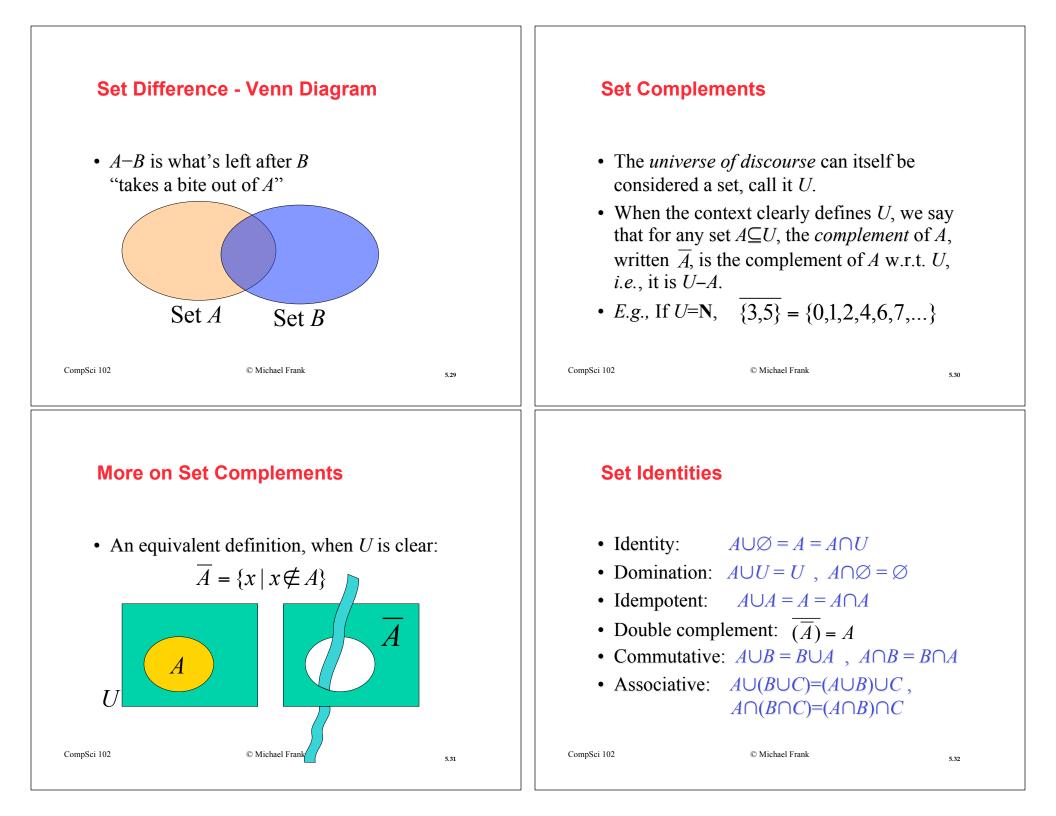
• $\{2,3,5\}\cup\{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$



Think "The <u>Uni</u>ted States of America includes every person who worked in <u>any</u> U.S. state last year." (This is how the IRS sees it...)







DeMorgan's Law for Sets

• Exactly analogous to (and provable from) DeMorgan's Law for propositions.

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proving Set Identities

- To prove statements about sets, of the form $E_1 = E_2$ (where the *E*s are set expressions), here are three useful techniques:
- 1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- 2. Use a *membership table*.
- 3. Use set builder notation & logical equivalences.

CompSci 102	© Michael Frank	5.33	CompSci 102	© Michael Frank	5.34
Method 1: Mutual subsets		Method 2: Membership Tables			
 Part 1: She Assume We know Case Case Therefore Therefore 	ow $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. ow $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$. w that $x \in A$, and either $x \in B$ or $x \in C$. $1: x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$. $2: x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$. re, $x \in (A \cap B) \cup (A \cap C)$. re, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. ow $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$		 Column Rows for in constant Use "1' derived 	e truth tables for propositions for different set expression all combinations of mer tituent sets. ' to indicate membership i set, "0" for non-members quivalence with identical of	n the hip.
CompSci 102	© Michael Frank	5.35	CompSci 102	© Michael Frank	5.36

