Today's topics

- Functions
- Notations and terms
- One-to-One vs. Onto
- Floor, ceiling, and identity
- Reading: Sections 1.8
- Upcoming
- Algorithms

On to section 1.8... Functions

- From calculus, you are familiar with the concept of a real-valued function f, which assigns to each number $x \in \mathbf{R}$ a particular value $y=f(x)$, where $y \in \mathbf{R}$.
- But, the notion of a function can also be naturally generalized to the concept of assigning elements of any set to elements of any set. (Also known as a map.)

Graphical Representations

- Functions can be represented graphically in several ways:

Like Venn diagrams

Functions We've Seen So Far

- A proposition can be viewed as a function from "situations" to truth values $\{\mathbf{T}, \mathbf{F}\}$
- A logic system called situation theory.
$-p=$ "It is raining."; $s=$ our situation here,now
$-p(s) \in\{\mathbf{T}, \mathbf{F}\}$.
- A propositional operator can be viewed as a function from ordered pairs of truth values to truth values: e.g., $\mathrm{v}((\mathbf{F}, \mathbf{T}))=\mathbf{T}$.

Another example: $\rightarrow((\mathbf{T}, \mathbf{F}))=\mathbf{F}$.

$$
4_{4.5}^{4.5}
$$

Range versus Codomain

- The range of a function might not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Range vs. Codomain - Example

- Suppose I declare to you that: " f is a function mapping students in this class to the set of grades $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$."
- At this point, you know f 's codomain is:
\qquad , and its range is \qquad .
- Suppose the grades turn out all As and Bs.
- Then the range of f is \qquad but its codomain is \qquad _.

Constructing Function Operators

- If • ("dot") is any operator over B, then we can extend \bullet to also denote an operator over functions $f: A \rightarrow B$.
- E.g.: Given any binary operator $\bullet: B \times B \rightarrow B$, and functions $f, g: A \rightarrow B$, we define $(f \bullet g): A \rightarrow B$ to be the function defined by: $\forall a \in A,(f \bullet g)(a)=f(a) \bullet g(a)$.

Operators (general definition)

- An n-ary operator over (or on) the set S is any function from the set of ordered n tuples of elements of S, to S itself.
- E.g., if $S=\{\mathbf{T}, \mathbf{F}\}, \neg$ can be seen as a unary operator, and \wedge, \vee are binary operators on S.
- Another example: \cup and \cap are binary operators on the set of all sets.

Function Operator Example

- +, \times ("plus","times") are binary operators over R. (Normal addition \& multiplication.)
- Therefore, we can also add and multiply functions $f, g: \mathbf{R} \rightarrow \mathbf{R}$:
$-(f+g): \mathbf{R} \rightarrow \mathbf{R}$, where $(f+g)(x)=f(x)+g(x)$
$-(f \times g): \mathbf{R} \rightarrow \mathbf{R}$, where $(f \times g)(x)=f(x) \times g(x)$

Function Composition Operator

Note match here.

- For functions $g: A \rightarrow B$ and $f: B \rightarrow C$, there is a special operator called compose ("○").
- It composes (creates) a new function out of f and g by applying f to the result of applying g.
- We say $(f \circ g): A \rightarrow C$, where $(f \circ g)(a): \equiv f(g(a))$.
- Note $g(a) \in B$, so $f(g(a))$ is defined and $\in C$.
- Note that \circ (like Cartesian \times, but unlike $+, \wedge, \cup$) is non-commuting. (Generally, $f \circ g \neq g \circ f$.)

Images of Sets under Functions

- Given $f: A \rightarrow B$, and $S \subseteq A$,
- The image of S under f is simply the set of all images (under f) of the elements of S.

$$
\begin{aligned}
f(S) & : \equiv\{f(s) \mid s \in S\} \\
& : \equiv\{b \mid \exists s \in S: f(s)=b\} .
\end{aligned}
$$

- Note the range of f can be defined as simply the image (under f) of f 's domain!

One-to-One Functions

- A function is one-to-one (1-1), or injective, or an injection, iff every element of its range has only 1 pre-image.
- Formally: given $f: A \rightarrow B$,

$$
\text { " } x \text { is injective" }: \equiv(\neg \exists x, y: x \neq y \wedge f(x)=f(y)) \text {. }
$$

- Only one element of the domain is mapped to any given one element of the range.
- Domain \& range have same cardinality. What about codomain?
- Memory jogger: Each element of the domain is injected into a different element of the range.
- Compare "each dose of vaccine is injected into a different patient."

One-to-One Illustration

- Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

One-to-one

Not one-to-one

Not even a function!

Sufficient Conditions for 1-1ness

- For functions f over numbers, we say:
$-f$ is strictly (or monotonically) increasing iff $x>y \rightarrow f(x)>f(y)$ for all x, y in domain;
$-f$ is strictly (or monotonically) decreasing iff $x>y \rightarrow f(x)<f(y)$ for all x, y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one. E.g. x^{3}
- Converse is not necessarily true. E.g. 1/x

Illustration of Onto

- Some functions that are, or are not, onto their codomains:

Onto (Surjective) Functions

- A function $f: A \rightarrow B$ is onto or surjective or a surjection iff its range is equal to its codomain ($\forall b \in B, \exists a \in A: f(a)=b)$.
- Think: An onto function maps the set A onto (over, covering) the entirety of the set B, not just over a piece of it.
- E.g., for domain \& codomain \mathbf{R}, x^{3} is onto, whereas x^{2} isn't. (Why not?)

Bijections

- A function f is said to be a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto.
- For bijections $f: A \rightarrow B$, there exists an inverse of f, written $f^{-1}: B \rightarrow A$, which is the unique function such that $f^{-1} \mathrm{O} f=I_{A}$ - (where I_{A} is the identity function on A)

The Identity Function

- For any domain A, the identity function I:A $\rightarrow A$ (variously written, $I_{A}, \mathbf{1}, \mathbf{1}_{A}$) is the unique function such that $\forall a \in A: I(a)=a$.
- Some identity functions you've seen:
-+ ing 0 , \cdot ing by 1 , \wedge ing with \mathbf{T}, ving with \mathbf{F}, \cup ing with \varnothing, \cap ing with U.
- Note that the identity function is always both one-to-one and onto (bijective).

Graphs of Functions

- We can represent a function $f: A \rightarrow B$ as a set of ordered pairs $\{(a, f(a)) \mid a \in A\}$. \leftarrow The function's sraph.
- Note that $\forall a$, there is only 1 pair (a, b).
- Later (ch.6): relations loosen this restriction.
- For functions over numbers, we can represent an ordered pair (x, y) as a point on a plane.
- A function is then drawn as a curve (set of points), with only one y for each x.

Identity Function Illustrations

- The identity function:

Domain and range

x

Aside About Representations

- It is possible to represent any type of discrete structure (propositions, bit-strings, numbers, sets, ordered pairs, functions) in terms of virtually any of the other structures (or some combination thereof).
- Probably none of these structures is truly more fundamental than the others (whatever that would mean). However, strings, logic, and sets are often used as the foundation for all else. E.g. in

A Couple of Key Functions

- In discrete math, we will frequently use the following two functions over real numbers:
- The floor function $\lfloor\cdot\rfloor: \mathbf{R} \rightarrow \mathbf{Z}$, where $\lfloor x\rfloor$ ("floor of x ") means the largest (most positive) integer $\leq x$. I.e., $\lfloor x\rfloor: \equiv \max (\{i \in \mathbf{Z} \mid i \leq x\})$.
- The ceiling function $\lceil\cdot\rceil: \mathbf{R} \rightarrow \mathbf{Z}$, where $\lceil x\rceil$ ("ceiling of x ") means the smallest (most negative) integer $\geq x .\lfloor x\rfloor: \equiv \min (\{i \in \mathbf{Z} \mid i \geq x\})$

Visualizing Floor \& Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbf{Z}$, $\lfloor-x\rfloor \neq-\lfloor x\rfloor \&$ $\lceil-x\rceil \neq-\lceil x\rceil$
- Note that if $x \in \mathbf{Z}$, $\lfloor x\rfloor=\lceil x\rceil=x$.

Plots with floor/ceiling

- Note that for $f(x)=\lfloor x\rfloor$, the graph of f includes the point $(a, 0)$ for all values of a such that $a \geq 0$ and $a<1$, but not for the value $a=1$.
- We say that the set of points $(a, 0)$ that is in f does not include its limit or boundary point $(a, 1)$.
- Sets that do not include all of their limit points are generally called open sets.
- In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Plots with floor/ceiling: Example

- Plot of graph of function $f(x)=\lfloor x / 3\rfloor$:

