Today's topics On to section 1.8... Functions Functions • From calculus, you are familiar with the Notations and terms concept of a real-valued function f, - One-to-One vs. Onto which assigns to each number $x \in \mathbf{R}$ a - Floor, ceiling, and identity particular value y=f(x), where $y \in \mathbf{R}$. • Reading: Sections 1.8 • But, the notion of a function can also be • Upcoming naturally generalized to the concept of - Algorithms assigning elements of any set to elements of any set. (Also known as a map.) CompSci 102 CompSci 102 © Michael Frank © Michael Frank 4.1 4.2 **Function: Formal Definition Graphical Representations** • For any sets A, B, we say that a *function f* • Functions can be represented graphically in from (or "mapping") A to B (f: $A \rightarrow B$) is a several ways: particular assignment of exactly one В A element $f(x) \in B$ to each element $x \in A$. • Some further generalizations of this idea: y - A partial (non-total) function f assigns zero or one elements of B to each element $x \in A$. х A **Bipartite Graph** R Plot – Functions of *n* arguments; relations (ch. 6). Like Venn diagrams

4.3

CompSci 102

4.4

Functions We've Seen So Far

- A *proposition* can be viewed as a function from "situations" to truth values {**T**,**F**}
 - A logic system called *situation theory*.
 - p="It is raining."; s=our situation here,now
 - $-p(s)\in\{\mathbf{T},\mathbf{F}\}.$
- A *propositional operator* can be viewed as a function from *ordered pairs* of truth values to truth values: *e.g.*, v((**F**,**T**)) = **T**.

CompSci 102

Another example: \rightarrow ((**T**,**F**)) = **F**.

We also say

the *signature*

of f is $A \rightarrow B$.

A Neat Trick

- Sometimes we write Y^X to denote the set F of *all* possible functions $f:X \rightarrow Y$.
- This notation is especially appropriate, because for finite X, Y, we have |F| = |Y|^{|X|}.
- If we use representations F=0, T=1, 2:= {0,1}={F,T}, then a subset T⊆S is just a function from S to 2, so the power set of S (set of all such fns.) is 2^S in this notation.

Com	oSci	102

© Michael Frank

4.6

• If it is written that $f:A \rightarrow B$, and f(a)=b(where $a \in A \& b \in B$), then we say:

-A is the *domain* of *f*.

- -B is the *codomain* of f.
- -b is the *image* of *a* under *f*.
- *a* is a *pre-image* of *b* under *f*.
 - In general, *b* may have more than 1 pre-image.
- The range $R \subseteq B$ of f is $R = \{b \mid \exists a f(a) = b\}$.

Range versus Codomain

- The range of a function might *not* be its whole codomain.
- The codomain is the set that the function is *declared* to map all domain values into.
- The range is the *particular* set of values in the codomain that the function *actually* maps elements of the domain to.

Range vs. Codomain - Example

- Suppose I declare to you that: "*f* is a function mapping students in this class to the set of grades {A,B,C,D,E}."
- At this point, you know *f*'s codomain is: _____, and its range is _____.
- Suppose the grades turn out all As and Bs.
- Then the range of *f* is _____, but its codomain is _____.

Operators (general definition)

- An *n*-ary *operator over* (or *on*) the set *S* is any function from the set of ordered *n*tuples of elements of *S*, to *S* itself.
- *E.g.*, if *S*={**T**,**F**}, ¬ can be seen as a unary operator, and ∧,∨ are binary operators on *S*.
- Another example: ∪ and ∩ are binary operators on the set of all sets.

CompSci 102	© Michael Frank	4.9	CompSci 102	© Michael Frank	4.10

Constructing Function Operators

- If ("dot") is any operator over *B*, then we can extend to also denote an operator over <u>functions *f*:A→B</u>.
- *E.g.*: Given any binary operator •:*B*×*B*→*B*, and functions *f*,*g*:*A*→*B*, we define (*f g*):*A*→*B* to be the function defined by: ∀*a*∈*A*, (*f g*)(*a*) = *f*(*a*)•*g*(*a*).

Function Operator Example

- +,× ("plus", "times") are binary operators over **R**. (Normal addition & multiplication.)
- Therefore, we can also add and multiply *functions f,g*:**R**→**R**:
 - $-(f + g): \mathbf{R} \rightarrow \mathbf{R}$, where (f + g)(x) = f(x) + g(x)
 - $-(f \times g): \mathbf{R} \rightarrow \mathbf{R}$, where $(f \times g)(x) = f(x) \times g(x)$

One-to-One Functions

- A function is *one-to-one* (1-1), or *injective*, or *an injection*, iff every element of its range has *only* 1 pre-image.
 - Formally: given $f:A \rightarrow B$, "x is injective" := $(\neg \exists x, y: x \neq y \land f(x)=f(y))$.
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have same cardinality. What about codomain?
- Memory jogger: Each element of the domain is <u>injected</u> into a different element of the range.
 - Compare "each dose of vaccine is injected into a different patient."

One-to-One Illustration

• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

Sufficient Conditions for 1-1ness

- For functions *f* over numbers, we say:
 - -f is *strictly* (or *monotonically*) *increasing* iff $x > y \rightarrow f(x) > f(y)$ for all x, y in domain;
 - *f* is *strictly* (or *monotonically*) *decreasing* iff $x > y \rightarrow f(x) < f(y)$ for all *x*, *y* in domain;
- If *f* is either strictly increasing or strictly decreasing, then *f* is one-to-one. *E.g.* x³
 - Converse is not necessarily true. E.g. 1/x

Onto (Surjective) Functions

- A function *f*:A→B is *onto* or *surjective* or a *surjection* iff its range is equal to its codomain (∀b∈B, ∃a∈A: f(a)=b).
- Think: An *onto* function maps the set *A* <u>onto</u> (over, covering) the *entirety* of the set *B*, not just over a piece of it.
- *E.g.*, for domain & codomain **R**, x³ is onto, whereas x² isn't. (Why not?)

CompSci 102	© Michael Frank	4.17	CompSci 102	© Michael Frank	4.18
Illustratio	on of Onto		Bijectio	ns	
 Some function Some fun	Not Onto Both 1-1	ot, onto	<i>corresp</i> <i>reversit</i> <u>both</u> on • For bije <i>inverse</i> unique	tion <i>f</i> is said to be <i>a one-to-on</i> <i>bondence</i> , or <i>a bijection</i> , or <i>ble</i> , or <i>invertible</i> , iff it is ne-to-one <u>and</u> onto. ections $f:A \rightarrow B$, there exists as <i>of f</i> , written $f^{-1}:B \rightarrow A$, which function such that $f^{-1} \circ f =$ re I_A is the identity function on <i>A</i>)	n h is the I_A

CompSci 102

The Identity Function

- For any domain *A*, the *identity function I:A* $\rightarrow A$ (variously written, I_A , **1**, **1**_A) is the unique function such that $\forall a \in A: I(a) = a$.
- Some identity functions you've seen:
 - +ing 0, ·ing by 1, ∧ing with **T**, ving with **F**, \cup ing with \emptyset , ∩ing with *U*.

© Michael Frank

• Note that the identity function is always both one-to-one and onto (bijective).

Identity Function Illustrations

• The identity function:

Graphs of Functions

- We can represent a function *f*:*A*→*B* as a set of ordered pairs {(*a*,*f*(*a*)) | *a*∈*A*}. ← The function's graph.
- Note that $\forall a$, there is only 1 pair (a,b).
 - Later (ch.6): *relations* loosen this restriction.
- For functions over numbers, we can represent an ordered pair (*x*,*y*) as a point on a plane.
 - A function is then drawn as a curve (set of points), with only one y for each x.

Aside About Representations

- It is possible to represent any type of discrete structure (propositions, bit-strings, numbers, sets, ordered pairs, functions) in terms of virtually any of the other structures (or some combination thereof).
- Probably <u>none</u> of these structures is <u>truly</u> more fundamental than the others (whatever that would mean). However, strings, logic, and sets are often used as the foundation for all else. *E.g.* in →

CompSci 102

4.21

A Couple of Key Functions

- In discrete math, we will frequently use the following two functions over real numbers:
 - The *floor* function $\lfloor \cdot \rfloor$: $\mathbb{R} \to \mathbb{Z}$, where $\lfloor x \rfloor$ ("floor of *x*") means the largest (most positive) integer $\leq x$. *I.e.*, $\lfloor x \rfloor$:= max({ $i \in \mathbb{Z} | i \leq x$ }).
 - The *ceiling* function $[\cdot] : \mathbb{R} \to \mathbb{Z}$, where [x]("ceiling of x") means the smallest (most negative) integer $\ge x$. $[x] :\equiv \min(\{i \in \mathbb{Z} | i \ge x\})$

Visualizing Floor & Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
 3⁴
- Note that if $x \notin \mathbb{Z}$, $\lfloor -x \rfloor \neq - \lfloor x \rfloor \&$ $\lfloor -x \rfloor \neq - \lceil x \rceil$
- Note that if $x \in \mathbb{Z}$, $\lfloor x \rfloor = \lceil x \rceil = x$.

CompSci 102	© Michael Frank	4.25	CompSci 102	© Michael Frank	4.26

Plots with floor/ceiling

- Note that for $f(x)=\lfloor x \rfloor$, the graph of *f* includes the point (a, 0) for all values of *a* such that $a \ge 0$ and a < 1, but not for the value a=1.
- We say that the set of points (*a*,0) that is in *f* does not include its *limit* or *boundary* point (*a*,1).
 - Sets that do not include all of their limit points are generally called *open* sets.
- In a plot, we draw a limit point of a curve using an open dot (circle) if the limit point is not on the curve, and with a closed (solid) dot if it is on the curve.

Plots with floor/ceiling: Example

4.27