

The Well-Ordering Property

- Another way to prove the validity of the inductive inference rule is by using the *well-ordering property*, which says that:
 - Every non-empty set of non-negative integers has a minimum (smallest) element.
 - $\forall \varnothing \subseteq S \subseteq \mathbb{N} : \exists m \in S : \forall n \in S : m \leq n$

Generalizing Induction

• This implies that $\{n | \neg P(n)\}$ (if non-empty) has a min. element *m*, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.

© Michael Frank

Outline of an Inductive Proof • Let us say we want to prove $\forall n P(n) \dots$ - Do the base case (or basis step): Prove P(0). - Do the *inductive step*: Prove $\forall n \ P(n) \rightarrow P(n+1)$. • *E.g.* you could use a direct proof, as follows: • Let $n \in \mathbb{N}$, assume P(n). (inductive hypothesis) • Now, under this assumption, prove P(n+1). - The inductive inference rule then gives us $\forall n P(n).$ CompSci 102 © Michael Frank 9.6 Second Principle of Induction

- Rule can also be used to prove $\forall n \ge c P(n)$
 - for a given constant $c \in \mathbb{Z}$, where maybe $c \neq 0$.
 - In this circumstance, the base case is to prove P(c) rather than P(0), and the inductive step is to prove $\forall n \ge c \ (P(n) \rightarrow P(n+1))$.
- Induction can also be used to prove $\forall n \ge c P(a_n)$ for any arbitrary series $\{a_n\}$.
- Can reduce these to the form already shown.

CompSci 102

CompSci 102

© Michael Frank

97

95

A.k.a. "Strong Induction"

- Characterized by another inference rule: P(0) P is true in all previous cases $\forall n \ge 0$: $(\forall 0 \le k \le n P(k)) \rightarrow P(n+1)$ $\therefore \forall n \ge 0$: P(n)
- The only difference between this and the 1st principle is that:
 - the inductive step here makes use of the stronger hypothesis that *P(k)* is true for *all* smaller numbers *k*<*n*+1, not just for *k=n*.

CompSci 102

© Michael Frank

Induction Example (1st princ.)

• Prove that the sum of the first *n* odd positive integers is *n*². That is, prove:

$$\forall n \ge 1 : \sum_{i=1}^{n} (2i-1) = n^2$$

- Proof by induction. $\stackrel{\mathbf{Y}}{P(n)}$
 - Base case: Let n=1. The sum of the first 1 odd positive integer is 1 which equals 1².
 (Cont...)

© Michael Frank

Example cont.

• Inductive step: Prove $\forall n \ge 1$: $P(n) \rightarrow P(n+1)$.

CompSci 102

© Michael Frank

Problem

CompSci 102

- Show for all natural numbers *n*
 - $-(n^3 n)$ is divisible by 3

Another Induction Example • Prove that $\forall n \geq 0$, $n < 2^n$. Let $P(n) = (n < 2^n)$ • Base case: $P(1) = (1 < 2^1) = (1 < 2) = T$. • Inductive step: For $n \geq 0$, prove $P(n) \rightarrow P(n+1)$. • Assuming $n < 2^n$, prove $n+1 < 2^{n+1}$. • Note $n + 1 < 2^n + 1$ (by inductive hypothesis) $< 2^n + 2^n$ (because $1 < 2 = 2 \cdot 2^0 \le 2 \cdot 2^{n-1} = 2^n$) $= 2^{n+1}$.

9.11

9.9

CompSci 102

© Michael Frank

9.10

Example of Second Principle

- Show that every *n*>1 can be written as a product $\prod p_i = p_1 p_2 \dots p_s$ of some series of *s* prime numbers. - Let P(n) = n has that property"
- **Base case:** n=2, let s=1, $p_1=2$.
- Inductive step: Let $n \ge 2$. Assume $\forall 2 \le k \le n$: P(k). Consider n+1. If it's prime, let $s=1, p_1=n+1$. Else n+1=ab, where $1 < a \le n$ and $1 < b \le n$. Then $a=p_1p_2...p_t$ and $b=q_1q_2...q_u$. Then we have that n+1= $p_1p_2...p_tq_1q_2...q_u$, a product of s=t+u primes.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4cent and 5-cent stamps. P(n)="n can be..."
- Base case: 12=3(4), 13=2(4)+1(5), 14=1(4)+2(5), 15=3(5), so $\forall 12 \le n \le 15$, P(n).
- Inductive step: Let $n \ge 15$, assume $\forall 12 \leq k \leq n P(k)$. Note $12 \leq n-3 \leq n$, so P(n-3), so add a 4-cent stamp to get postage for n+1.

CompSci 102	© Michael Frank	9.13	CompSci 102	© Michael Frank	9.14
The Met	hod of Infinite Descent		Infinite	Descent Example	
 Sort of a con Prove first th Basically, " But by the w that ∃P(m) - Basically, " Note that the 	ove that $P(n)$ is false for all $n \in \mathbb{N}$. Every P there is a smaller P ." For every P there is a smaller P ." rell-ordering property of \mathbb{N} , we know $\Rightarrow \exists P(n): \forall P(k): n \leq k$. If there is a P , there is a smallest P ." esse are contradictory unless $\neg \exists P(m)$, $\in \mathbb{N}: \neg P(m)$. There is no P .		• Proof: S $2^{1/2} = m/n$. $\frac{2N-M}{M-N} = \frac{(2)}{(N-N)}$ $1 < \sqrt{2} < 2$	a: $2^{1/2}$ is irrational. uppose $2^{1/2}$ is rational, then Let M,N be the m,n with the $\sqrt{2} = \frac{M}{N} \therefore 2 = \frac{M^2}{N^2} \therefore 2N^2 = M^2$. $\frac{N-M}{M-N}N = \frac{2N^2 - MN}{(M-N)N} = \frac{M^2 - MN}{(M-N)N} = \frac{(M-M)}{(M-N)N}$ $2 \therefore 1 < \frac{M}{N} < 2 \therefore N < M < 2N \therefore 0 < M$ $j: 2^{1/2} = j/k$ (let $j=2N-M$, $k=1$)	the least <i>n</i> . $\frac{(-N)M}{(-N)N} = \frac{M}{N}$ $\frac{M}{(-N)} < N$
CompSci 102	© Michael Frank	9.15	CompSci 102	© Michael Frank	9.16