Today's topics

- Induction
- Reading: Sections 3.3
- Upcoming
- More Induction

The "Domino Effect"

- Premise \#1: Domino ${ }^{0} 0$ falls.
- Premise \#2: For every qien
if domino $\# n$ falls, then go. does domino $\# n+1$.
- Conclusion: All of the dominoes fall down!

§3.3: Mathematical Induction

- A powerful, rigorous technique for proving that a predicate $P(n)$ is true for every natural number n, no matter how large.
- Essentially a "domino effect" principle.
- Based on a predicate-logic inference rule:
$P(0)$
$\forall n \geq 0(P(n) \rightarrow P(n+1))$ $\therefore \forall n \geq 0 P(n)$
"The First Principle of Mathematical Induction"

Validity of Induction

Proof that $\forall k \geq 0 P(k)$ is a valid consequent:
Given any $k \geq 0$, the $2^{\text {nd }}$ antecedent
$\forall n \geq 0(P(n) \rightarrow P(n+1))$ trivially implies that $\forall n \geq 0(n<k) \rightarrow(P(n) \rightarrow P(n+1))$, i.e., that $(P(0) \rightarrow$ $P(1)) \wedge(P(1) \rightarrow P(2)) \wedge \ldots \wedge(P(k-1) \rightarrow P(k))$.
Repeatedly applying the hypothetical syllogism rule to adjacent implications in this list $k-1$ times then gives us $P(0) \rightarrow P(k)$; which together with $P(0)$ (antecedent \#1) and modus ponens gives us $P(k)$. Thus $\forall k \geq 0 P(k)$.

The Well-Ordering Property

- Another way to prove the validity of the inductive inference rule is by using the wellordering property, which says that:
- Every non-empty set of non-negative integers has a minimum (smallest) element.
$-\forall \varnothing \subset S \subseteq \mathbf{N}: \exists m \in S: \forall n \in S: m \leq n$
- This implies that $\{n \mid \neg P(n)\}$ (if non-empty) has a min. element m, but then the assumption that $P(m-1) \rightarrow P((m-1)+1)$ would be contradicted.

Generalizing Induction

- Rule can also be used to prove $\forall n \geq c P(n)$ for a given constant $c \in \mathbf{Z}$, where maybe $c \neq 0$.
- In this circumstance, the base case is to prove $P(c)$ rather than $P(0)$, and the inductive step is to prove $\forall n \geq c(P(n) \rightarrow P(n+1))$.
- Induction can also be used to prove $\forall n \geq c P\left(a_{n}\right)$ for any arbitrary series $\left\{a_{n}\right\}$.
- Can reduce these to the form already shown.

Outline of an Inductive Proof

- Let us say we want to prove $\forall n P(n) \ldots$
- Do the base case (or basis step): Prove $P(0)$.
- Do the inductive step: Prove $\forall n P(n) \rightarrow P(n+1)$.
- E.g. you could use a direct proof, as follows:
- Let $n \in \mathbf{N}$, assume $P(n)$. (inductive hypothesis)
- Now, under this assumption, prove $P(n+1)$.
- The inductive inference rule then gives us $\forall n P(n)$.

Second Principle of Induction

> A.k.a. "Strong Induction"

- Characterized by another inference rule:
$P(0) \quad P$ is true in all previous cases
$\forall n \geq 0:(\forall 0 \leq k \leq n P(k)) \rightarrow P(n+1)$
$\therefore \forall n \geq 0: P(n)$
- The only difference between this and the 1st principle is that:
- the inductive step here makes use of the stronger hypothesis that $P(k)$ is true for all smaller numbers $k<n+1$, not just for $k=n$.

Induction Example (1st princ.)

- Prove that the sum of the first n odd positive integers is n^{2}. That is, prove:

$$
\forall n \geq 1: \sum_{i=1}^{n}(2 i-1)=n^{2}
$$

- Proof by induction. $P(n)$
- Base case: Let $n=1$. The sum of the first 1 odd positive integer is 1 which equals 1^{2}. (Cont...)

Problem

- Show for all natural numbers n
$-\left(n^{3}-n\right)$ is divisible by 3

Example cont.

- Inductive step: Prove $\forall n \geq 1: P(n) \rightarrow P(n+1)$.
- Let $n \geq 1$, assume $P(n)$, and prove $P(n+1)$.

Another Induction Example

- Prove that $\forall n>0, n<2^{n}$. Let $P(n)=\left(n<2^{n}\right)$
- Base case: $P(1)=\left(1<2^{1}\right)=(1<2)=\mathbf{T}$.
- Inductive step: For $n>0$, prove $P(n) \rightarrow P(n+1)$.
- Assuming $n<2^{n}$, prove $n+1<2^{n+1}$.
- Note $n+1<2^{n}+1$ (by inductive hypothesis)

$$
\left.<2^{n}+2^{n} \text { (because } 1<2=2 \cdot 2^{0} \leq 2 \cdot 2^{n-1}=2^{n}\right)
$$

$$
=2^{n+1}
$$

- So $n+1<2^{n+1}$, and we're done.

Example of Second Principle

- Show that every $n>1$ can be written as a product
$\prod p_{i}=p_{1} p_{2} \ldots p_{s}$ of some series of s prime numbers.
- Let $P(n)=$ " n has that property"
- Base case: $n=2$, let $s=1, p_{1}=2$.
- Inductive step: Let $n \geq 2$. Assume $\forall 2 \leq k \leq n: P(k)$.

Consider $n+1$. If it's prime, let $s=1, p_{1}=n+1$.
Else $n+1=a b$, where $1<a \leq n$ and $1<b \leq n$.
Then $a=p_{1} p_{2} \ldots p_{t}$ and $b=q_{1} q_{2} \ldots q_{u}$. Then we have that $n+1=$ $p_{1} p_{2} \ldots p_{t} q_{1} q_{2} \ldots q_{u}$, a product of $s=t+u$ primes.

Another 2nd Principle Example

- Prove that every amount of postage of 12 cents or more can be formed using just 4cent and 5-cent stamps. $P(n)=$ " n can be..."
- Base case: $12=3(4), 13=2(4)+1(5)$, $14=1(4)+2(5), 15=3(5)$, so $\forall 12 \leq n \leq 15, P(n)$.
- Inductive step: Let $n \geq 15$, assume
$\forall 12 \leq k \leq n P(k)$. Note $12 \leq n-3 \leq n$, so $P(n-3)$, so add a 4-cent stamp to get postage for $n+1$.

CompSci 102

Infinite Descent Example

- Theorem: $2^{1 / 2}$ is irrational.
- Proof: Suppose $2^{1 / 2}$ is rational, then $\exists m, n \in \mathbf{Z}^{+}$: $2^{1 / 2}=m / n$. Let M, N be the m, n with the least n.

$$
\begin{gathered}
\sqrt{2}=\frac{M}{N} \therefore 2=\frac{M^{2}}{N^{2}} \therefore 2 N^{2}=M^{2} . \\
\frac{2 N-M}{M-N}=\frac{(2 N-M) N}{(M-N) N}=\frac{2 N^{2}-M N}{(M-N) N}=\frac{M^{2}-M N}{(M-N) N}=\frac{(M-N) M}{(M-N) N}=\frac{M}{N} \\
1<\sqrt{2}<2 \therefore 1<\frac{M}{N}<2 \therefore N<M<2 N \therefore 0<M-N<N \\
\text { So } \left.\exists k<N, j: 2^{1 / 2}=j / k \text { (let } j=2 N-M, k=M-N\right) .
\end{gathered}
$$

