Today's topics

- Recursion

- Recursively defined functions
- Recursively defined sets
- Structural Induction
- Reading: Sections 3.4
- Upcoming
- Counting

Recursion

- Recursion is the general term for the practice of defining an object in terms of itself
- or of part of itself
- This may seem circular, but it inn't necessarily.
- An inductive proof establishes the truth of $P(n+1)$ recursively in terms of $P(n)$.
- There are also recursive algorithms, definitions, functions, sequences, sets, and other structures.

§3.4: Recursive Definitions

- In induction, we prove all members of an infinite set satisfy some predicate P by:
- proving the truth of the predicate for larger members in terms of that of smaller members.
- In recursive definitions, we similarly define a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by:
- defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.
- In structural induction, we inductively prove properties of recursively-defined objects in a way that parallels the objects' own recursive definitions.

Recursively Defined Functions

- Simplest case: One way to define a function $f: \mathbf{N} \rightarrow S$ (for any set S) or series $a_{n}=f(n)$ is to:
- Define $f(0)$.
- For $n>0$, define $f(n)$ in terms of $f(0), \ldots, f(n-1)$.
- E.g.: Define the series $a_{n}: \equiv 2^{n}$ recursively:
- Let $a_{0}: \equiv 1$.
- For $n>0$, let $a_{n}: \equiv 2 a_{n-1}$.

Another Example

- Suppose we define $f(n)$ for all $n \in \mathbf{N}$ recursively by:
- Let $f(0)=3$
- For all $n \in \mathbf{N}$, let $f(n+1)=2 f(n)+3$
- What are the values of the following?
$-f(1)=9 \quad f(2)=21 \quad f(3)=45 f(4)=93$

More Easy Examples

- Write down recursive definitions for:
$i+n(i$ integer, n natural) using only $s(i)=i+1$.
$a \cdot n$ (a real, n natural) using only addition a^{n} (a real, n natural) using only multiplication
$\sum_{0 \leq i \leq n} a_{i}$ (for an arbitrary series of numbers $\left\{a_{i}\right\}$)
$\prod_{0 \leq i \leq n} a_{i}$ (for an arbitrary series of numbers $\left\{a_{i}\right\}$)
$\bigcap_{0 \leq i \leq n} S_{i}$ (for an arbitrary series of sets $\left\{S_{i}\right\}$)

Recursive definition of Factorial

- Give an inductive (recursive) definition of the factorial function,
$F(n): \equiv n!: \equiv \prod_{1 \leq i \leq n} i=1 \cdot 2 \cdot \ldots \cdot n$.
- Base case: $F(0): \equiv 1$
- Recursive part: $F(n): \equiv n \cdot F(n-1)$.
- $F(1)=1$
- $F(2)=2$
- $F(3)=6$

The Fibonacci Series

- The Fibonacci series $f_{n \geq 0}$ is a famous series defined by:

$$
f_{0}: \equiv 0, \quad f_{1}: \equiv 1, \quad f_{n \geq 2}: \equiv f_{n-1}+f_{n-2}
$$

Inductive Proof about Fib. series

- Theorem: $f_{n}<2^{n}$. \longleftarrow Implicitly for all $n \in \mathbf{N}$
- Proof: By induction.

Base cases:

$$
\left.\begin{array}{l}
f_{0}=0<2^{0}=1 \\
f_{1}=1<2^{1}=2
\end{array}\right\} \begin{aligned}
& \text { Note use of } \\
& \text { base cases of } \\
& \text { recursive def'n. }
\end{aligned}
$$

Inductive step: Use $2^{\text {nd }}$ principle of induction (strong induction). Assume $\forall k<n, f_{k}<2^{k}$.
Then $f_{n}=f_{n-1}+f_{n-2}$ is

$$
<2^{n-1}+2^{n-2}<2^{n-1}+2^{n-1}=2^{n}
$$

Lamé's Theorem

- Theorem: $\forall a, b \in \mathbf{N}, a \geq b>0$, the number of steps in Euclid's algorithm to find $\operatorname{gcd}(a, b)$ is $\leq 5 k$, where $k=\left\lfloor\log _{10} b\right\rfloor+1$ is the number of decimal digits in b.
- Thus, Euclid's algorithm is lineartime in the number of digits in b.

- Proof:

- Uses the Fibonacci sequence!
- See next 2 slides.

A lower bound on Fibonacci series

- Theorem. For all integers $n \geq 3, f_{n}>\alpha^{n-2}$, where $\alpha=\left(1+5^{1 / 2}\right) / 2 \approx 1.61803$.
- Proof. (Using strong induction.)
- Let $P(n)=\left(f_{n}>\alpha^{n-2}\right)$.
- Base cases: For $n=3$, note that $\alpha<2=f_{3}$. For $n=4, \alpha^{2}$ $=\left(1+2 \cdot 5^{1 / 2}+5\right) / 4=\left(3+5^{1 / 2}\right) / 2 \approx 2.61803<3=f_{4}$.
- Inductive step: For $k \geq 4$, assume $P(j)$ for $3 \leq j \leq k$, prove $P(k+1)$. Note $\alpha^{2}=\alpha+1$. Thus, $\alpha^{k-1}=(\alpha+1) \alpha^{k-3}=\alpha^{k-2}+$ α^{k-3}. By inductive hypothesis, $f_{k-1}>\alpha^{k-3}$ and $f_{k}>\alpha^{k-2}$. So, $f_{k+1}=f_{k}+f_{k-1}>\alpha^{k-2}+\alpha^{k-3}=\alpha^{k-1}$. Thus $P(k+1)$.

Proof of Lamé's Theorem

- Consider the sequence of divisionalgorithm equations used in Euclid's alg.:

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & \text { with } 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & \text { with } 0 \leq r_{3}<r_{2} \\
\ldots & \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & \text { with } 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n}+r_{n+1} & \text { with } r_{n+1}=0 \text { (terminate) }
\end{array}
$$

- The number of divisions (iterations) is n.

Continued on next slide...
CompSci 102
© Michael Frank 10.12

Lamé Proof, continued

- Since $r_{0} \geq r_{1}>r_{2}>\ldots>r_{n}$, each quotient $q_{i} \equiv\left\lfloor r_{i-1} / r_{i}\right\rfloor \geq 1$.
- Since $r_{n-1}=r_{n} q_{n}$ and $r_{n-1}>r_{n}, q_{n} \geq 2$.
- So we have the following relations between r and f : $r_{n} \geq 1=f_{2}$
$r_{n-1} \geq 2 r_{n} \geq 2 f_{2}=f_{3}$
$r_{n-2} \geq r_{n-1}+r_{n} \geq f_{2}+f_{3}=f_{4}$
$r_{2} \geq r_{3}+r_{4} \geq f_{n-1}+f_{n-2}=f_{n}$
$b=r_{1} \geq r_{2}+r_{3} \geq f_{n}+f_{n-1}=f_{n+1}$.
- Thus, if $n>2$ divisions are used, then $b \geq f_{n+1}>\alpha^{n-1}$.
- Thus, $\log _{10} b>\log _{10}\left(\alpha^{n-1}\right)=(n-1) \log _{10} \alpha \approx(n-1) 0.208>(n-1) / 5$.
- If b has k decimal digits, then $\log _{10} b<k$, so $n-1<5 k$, so $n \leq 5 k$.

The Set of All Strings

- Given an alphabet Σ, the set Σ^{*} of all strings over Σ can be recursively defined by:

$$
\varepsilon \in \Sigma^{*}(\varepsilon: \equiv \text { """, the empty string }) \begin{gathered}
\text { Book } \\
\text { uses } \lambda
\end{gathered}
$$

$$
w \in \Sigma^{*} \wedge x \in \Sigma \rightarrow w x \in \Sigma^{*}
$$

- Exercise: Prove that this definition is equivalent to our old one:

$$
\Sigma^{*}: \equiv \bigcup_{n \in \mathrm{~N}} \Sigma^{n}
$$

Recursively Defined Sets

- An infinite set S may be defined recursively, by giving:
- A small finite set of base elements of S.
- A rule for constructing new elements of S from previously-established elements.
- Implicitly, S has no other elements but these.
- Example: Let $3 \in S$, and let $x+y \in S$ if $x, y \in S$. What is S ?

Other Easy String Examples

- Give recursive definitions for:
- The concatenation of strings $w_{1} \cdot w_{2}$.
- The length $\ell(w)$ of a string w.
- Well-formed formulae of propositional logic involving T, F, propositional variables, and operators in $\{\neg, \wedge, \vee, \rightarrow, \leftrightarrow\}$.
- Well-formed arithmetic formulae involving variables, numerals, and ops in $\left\{+,-,{ }^{*}, \uparrow\right\}$.

Rooted Trees

- Trees will be covered in CompSci 130.
- Briefly, a tree is a graph in which there is exactly one undirected path between each pair of nodes.
- An undirected graph can be represented as a set of unordered pairs (called arcs) of objects called nodes.
- Definition of the set of rooted trees:
- Any single node r is a rooted tree.
- If T_{1}, \ldots, T_{n} are disjoint rooted trees with respective roots r_{1}, \ldots, r_{n}, and r is a node not in any of the T_{i} 's, then another rooted tree is $\left\{\left\{r, r_{1}\right\}, \ldots,\left\{r, r_{n}\right\}\right\} \cup T_{1} \cup \ldots \cup$ T_{n}.

Extended Binary Trees

- A special case of rooted trees.
- Recursive definition of EBTs:
- The empty set \varnothing is an extended binary tree.
- If T_{1}, T_{2} are disjoint EBTs, then $e_{1} \cup e_{2} \cup T_{1} \cup T_{2}$ is an EBT, where $e_{1}=\varnothing$ if $T_{1}=\varnothing$, and $e_{1}=$ $\left\{\left(r, r_{1}\right)\right\}$ if $T_{1} \neq \varnothing$ and has root r_{1}, and similarly for e_{2}.

Illustrating Rooted Tree Def'n.

- How rooted trees can be combined to form a new rooted tree..

Full Binary Trees

- A special case of extended binary trees.
- Recursive definition of FBTs:
- A single node r is a full binary tree.
- Note this is different from the EBT base case.
- If T_{1}, T_{2} are disjoint FBTs, then $e_{1} \cup e_{2} \cup T_{1} \cup T_{2}$, where $e_{1}=\varnothing$ if T_{1}
$=\varnothing$, and $e_{1}=\left\{\left(r, r_{1}\right)\right\}$ if $T_{1} \neq \varnothing$ and has root r_{1}, and similarly for e_{2}.
- Note this is the same as the EBT recursive case!
- Can simplify it to "If T_{1}, T_{2} are disjoint FBTs with roots r_{1} and r_{2}, then $\left\{\left(r, r_{1}\right),\left(r, r_{2}\right)\right\} \cup T_{1} \cup T_{2}$ is an FBT.,

Structural Induction

- Proving something about a recursively defined object using an inductive proof whose structure mirrors the object's definition.
- Example problem: Let $3 \in S$, and let $x+y \in$ S if $x, y \in S$. Show that $S=\left\{n \in \mathbf{Z}^{+} \mid(3 \mid n)\right\}$ (the set of positive multiples of 3).

Example continued

- Let $3 \in S$, and let $x+y \in S$ if $x, y \in S$. Let $A=\left\{n \in \mathbf{Z}^{+} \mid(3 \mid n)\right\}$.
- Theorem: $A=S$. Proof: We show that $A \subseteq S$ and $S \subseteq A$.
- To show $A \subseteq S$, show $\left[n \in \mathbf{Z}^{+} \wedge(3 \mid n)\right] \rightarrow n \in S$.
- Inductive proof. Let $P(n): \equiv n \in S$. Induction over positive multiples of 3 . Base case: $n=3$, thus $3 \in S$ by def'n. of S. Inductive step: Given $P(n)$, prove $P(n+3)$. By inductive hyp., $n \in S$, and $3 \in S$, so by def'n of $S, n+3 \in S$
- To show $S \subseteq A$: let $n \in S$, show $n \in A$.
- Structural inductive proof. Let $P(n): \equiv n \in A$. Two cases: $n=3$ (base case), which is in A, or $n=x+y$ (recursive step). We know x and y are positive, since neither rule generates negative numbers. So, $x<n$ and $y<n$, and so we know x and y are in A, by strong inductive hypothesis Since $3 \mid x$ and $3 \mid y$, we have $3 \mid(x+y)$, thus $x+y \in A$.

