
CompSci 102 © Michael Frank
10.1

Today’s topics

•• RecursionRecursion

–– Recursively defined functionsRecursively defined functions

–– Recursively defined setsRecursively defined sets

–– Structural InductionStructural Induction

•• ReadingReading: Sections : Sections 3.43.4

•• UpcomingUpcoming

–– CountingCounting

CompSci 102 © Michael Frank
10.2

§3.4: Recursive Definitions

•• In induction, we In induction, we proveprove all members of an infinite set all members of an infinite set
satisfy some predicate satisfy some predicate PP by: by:

–– proving the truth of the predicate for larger members in terms ofproving the truth of the predicate for larger members in terms of
that of smaller members.that of smaller members.

•• In In recursive definitionsrecursive definitions, we similarly , we similarly definedefine a function, a a function, a
predicate, a set, or a more complex structure over anpredicate, a set, or a more complex structure over an
infinite domain (universe of discourse) by:infinite domain (universe of discourse) by:

–– defining the function, predicate value, set membership, ordefining the function, predicate value, set membership, or
structure of larger elements in terms of those of smaller ones.structure of larger elements in terms of those of smaller ones.

•• In In structural inductionstructural induction, we inductively prove properties of, we inductively prove properties of
recursively-defined objects in a way that parallels therecursively-defined objects in a way that parallels the
objectsobjects’’ own recursive definitions. own recursive definitions.

CompSci 102 © Michael Frank
10.3

Recursion

•• RecursionRecursion is the general term for the practice of defining is the general term for the practice of defining

an object in terms of an object in terms of itselfitself

–– or of part of itselfor of part of itself

–– This may seem circular, but it isnThis may seem circular, but it isn’’t necessarily.t necessarily.

•• An inductive proof establishes the truth of An inductive proof establishes the truth of PP((nn+1)+1)

recursivelyrecursively in terms of in terms of PP((nn).).

•• There are also recursive There are also recursive algorithmsalgorithms, , definitionsdefinitions, , functionsfunctions,,

sequencessequences, , setssets, and other structures., and other structures.

CompSci 102 © Michael Frank
10.4

Recursively Defined Functions

•• Simplest case: One way to define aSimplest case: One way to define a
function function ff::NN!!SS (for any set (for any set SS) or series) or series

aann==ff((nn) is to:) is to:

–– Define Define ff(0).(0).

–– For For nn>0, define >0, define ff((nn) in terms of) in terms of ff(0),(0),……,,ff((nn!!1).1).

•• E.g.E.g.: Define the series : Define the series aan n ::"" 22nn recursively: recursively:

–– Let Let aa0 0 ::"" 1.1.

–– For For nn>0, let >0, let aann ::"" 22aann-1-1..

CompSci 102 © Michael Frank
10.5

Another Example

•• Suppose we define Suppose we define ff((nn) for all) for all nn##NN

recursively by:recursively by:

–– Let Let ff(0)=3(0)=3

–– For all For all nn##NN, let, let f(nf(n+1)=2+1)=2ff((nn)+3)+3

•• What are the values of the following?What are the values of the following?

–– ff(1)= (1)= ff(2)= (2)= ff(3)= (3)= ff(4)=(4)=9 21 45 93

CompSci 102 © Michael Frank
10.6

Recursive definition of Factorial

•• Give an inductive (recursive) definition ofGive an inductive (recursive) definition of

the factorial function,the factorial function,

FF((nn) :) :"" nn! :! :" " &&11##ii""nn i = i = 1 1""22""……""nn..

–– Base case: Base case: FF(0) (0) ::"" 1 1

–– Recursive part: Recursive part: FF((nn)) ::"" n n "" FF((nn!!1).1).

•• FF(1)=1(1)=1

•• FF(2)=2(2)=2

•• FF(3)=6(3)=6

CompSci 102 © Michael Frank
10.7

More Easy Examples

•• Write down recursive definitions for:Write down recursive definitions for:

ii++nn ((ii integer, integer, nn natural) using only natural) using only ss((ii) =) = ii+1.+1.

aa··nn ((aa real, real, nn natural) using only addition natural) using only addition

aann ((aa real, real, nn natural) using only multiplication natural) using only multiplication

!!00##ii""nn aaii (for an arbitrary series of numbers { (for an arbitrary series of numbers {aaii})})

##00##ii""nn aaii (for an arbitrary series of numbers {(for an arbitrary series of numbers {aaii})})

$$00##ii""nn SSii (for an arbitrary series of sets { (for an arbitrary series of sets {SSii})})

CompSci 102 © Michael Frank
10.8

The Fibonacci Series

•• The The Fibonacci seriesFibonacci series ffnn%%00 is a famous series is a famous series

defined by:defined by:

ff00 : :" " 0, 0, ff11 : :" " 1, 1, ffnn%%22 : :" " ffnn!1!1 + + ffnn!2!2

Leonardo Fibonacci

1170-1250

0

1 1

2 3

5 8

13

CompSci 102 © Michael Frank
10.9

Inductive Proof about Fib. series

•• Theorem: Theorem: ffnn < < 22nn..

•• Proof:Proof: By induction. By induction.

Base cases:Base cases: ff00 = 0 < 2 = 0 < 200 = 1 = 1
ff11 = 1 < 2 = 1 < 211 = 2 = 2

Inductive step: Use 2Inductive step: Use 2ndnd principle of induction principle of induction
(strong induction). Assume (strong induction). Assume $$kk<<nn, , ffkk < < 22kk..

Then Then ffnn = = ffnn!1!1 + + ffnn!2!2 is is
 < 2< 2nn!1!1 + 2 + 2nn!2!2 < 2 < 2nn!1!1 + 2 + 2nn!1!1 = 2 = 2nn. . ((

Note use of

base cases of

recursive def’n.

Implicitly for all n#N

CompSci 102 © Michael Frank
10.10

A lower bound on Fibonacci series

•• Theorem.Theorem. For all integers For all integers nn %% 3, 3, ffnn > > $$nn!2!2, where, where
$$ = (1+5 = (1+51/21/2)/2)/2 '' 1.61803. 1.61803.

•• Proof.Proof. (Using strong induction.) (Using strong induction.)

–– Let Let PP((nn) = () = (ffnn > > $$nn!2!2).).

–– Base cases: Base cases: For For nn=3, note that=3, note that $$ < 2 = < 2 = ff33. For . For nn=4, =4, $$22

= (1+2·5= (1+2·51/21/2+5)/4 = (3+5+5)/4 = (3+51/21/2)/2)/2 '' 2.61803 < 3 = 2.61803 < 3 = ff44..

–– Inductive step: Inductive step: For For kk%%4, assume 4, assume PP((jj) for 3) for 3##jj##kk, prove, prove
PP((kk+1). Note +1). Note $$22 = = $$+1. Thus, +1. Thus, $$kk!1!1 = (= ($$+1)+1)$$kk!3!3 = = $$kk!2!2 + +
$$kk!3!3. By inductive hypothesis, . By inductive hypothesis, ffkk!1!1

 > > $$kk!3!3 and and ffkk > > $$kk!2!2..
So, So, ffkk+1+1 = = ffkk + + ffkk!1!1 > > $$kk!2!2 + + $$kk!3!3 = = $$kk!1!1. Thus . Thus PP((kk+1). +1). ((

CompSci 102 © Michael Frank
10.11

Lamé’s Theorem

•• Theorem:Theorem: $$aa,,bb##NN, , aa%%bb>0,>0,

the number of steps in Euclidthe number of steps in Euclid’’ss
algorithm to find algorithm to find gcd(gcd(aa,,bb) is) is
5 5kk, where , where kk = = %%loglog1010 bb&&+1 is the+1 is the

number of decimal digits in number of decimal digits in bb..

–– Thus, EuclidThus, Euclid’’s algorithm is linear-s algorithm is linear-
time in the number of digits in time in the number of digits in bb..

•• Proof:Proof:

–– Uses the Fibonacci sequence!Uses the Fibonacci sequence!

–– See next 2 slides.See next 2 slides.

Gabriel Lamé

1795-1870

CompSci 102 © Michael Frank
10.12

Proof of Lamé’s Theorem

•• Consider the sequence of division-Consider the sequence of division-
algorithm equations used in Euclidalgorithm equations used in Euclid’’s s algalg.:.:

rr00 = = rr11qq11 + + rr22 with 0 with 0 ## rr22 < < rr11

rr11 = = rr22qq22 + + rr33 with 0 with 0 ## rr33 < < rr22

……

rrnn!2!2 = = rrnn!1!1qqnn!1!1 + + rrnn with 0 with 0 ## rrnn < < rrnn!1!1

rrnn!1!1 = = rrnnqqnn + r + rnn+1+1 with with rrnn+1+1 = 0 (terminate) = 0 (terminate)

•• The number of divisions (iterations)The number of divisions (iterations) is is nn..

Where a =

r0,

b = r1, and

gcd(a,b)=rn.

Continued on next slide…

CompSci 102 © Michael Frank
10.13

Lamé Proof, continued

•• Since Since rr00 %% rr11 > > rr22 > > …… > > rrnn, each quotient , each quotient qqii " " %%rrii!1!1//rrii&& %% 1. 1.

•• Since Since rrnn!1!1 = = rrnnqqnn and and rrnn!1!1 > > rrnn, , qqnn %% 2. 2.

•• So we have the following relations between So we have the following relations between rr and and ff::

rrnn %% 1 = 1 = ff22

rrnn!1!1 %% 2 2rrnn %% 2 2ff22 = = ff33

rrnn!2!2 %% rrnn!1!1 + + rrnn %% ff22 + + ff33 = = ff44

……

rr22 %% rr33 + + rr44 %% ffnn!1!1 + + ffnn!2!2 = = ffnn

bb = = rr11 %% rr22 + + rr33 %% ffnn + + ffnn!1!1 = = ffnn+1+1..

•• Thus, if Thus, if nn>2 divisions are used, then >2 divisions are used, then bb %% ffnn+1+1 > > $$nn!1!1..

–– Thus, logThus, log1010 bb > log > log1010(($$nn!1!1) = () = (nn!1!1)log)log10 10 $$ '' ((nn!1!1)0.208 > ()0.208 > (nn!1!1)/5.)/5.

–– If If bb has has kk decimal digits, then log decimal digits, then log1010 bb < < kk, so , so nn!1!1 < 5< 5kk, so , so n n "" 55k.k.

CompSci 102 © Michael Frank
10.14

Recursively Defined Sets

•• An infinite set An infinite set SS may be defined may be defined
recursively, by giving:recursively, by giving:

–– A small finite set of A small finite set of basebase elements of elements of SS..

–– A rule for constructing new elements of A rule for constructing new elements of SS from from
previously-established elements.previously-established elements.

–– Implicitly, Implicitly, SS has no other elements but these. has no other elements but these.

•• Example:Example: Let 3 Let 3##SS, and let , and let xx++yy##SS if if xx,,yy##SS..

What is What is SS??

CompSci 102 © Michael Frank
10.15

The Set of All Strings

•• Given an alphabet Given an alphabet ,,, the set , the set ,,** of all of all

strings over strings over ,, can be recursively defined by: can be recursively defined by:

-- ## ,,** ((-- : :" " “”“”, the empty string), the empty string)

ww ## ,,* * '' xx ## ,,)) wxwx ## ,,**

•• Exercise:Exercise: Prove that this definition is Prove that this definition is

equivalent to our old one:equivalent to our old one:

Book

uses .

U
N!

"
#$#

n

n
:

CompSci 102 © Michael Frank
10.16

Other Easy String Examples

•• Give recursive definitions for:Give recursive definitions for:

–– The concatenation of strings The concatenation of strings ww11··ww22..

–– The length The length ll((ww) of a string) of a string ww..

–– Well-formed formulae of propositional logicWell-formed formulae of propositional logic

involving involving TT, , FF, propositional variables, and, propositional variables, and

operators in {¬, operators in {¬, '', , ((, ,),), *}*}..

–– Well-formed arithmetic formulae involvingWell-formed arithmetic formulae involving

variables, numerals, and ops in {+, variables, numerals, and ops in {+, !,!, *, *, +}+}..

CompSci 102 © Michael Frank
10.17

Rooted Trees

•• Trees will be covered in Trees will be covered in CompSci 130CompSci 130..
–– Briefly, a tree is a graph in which there is exactly oneBriefly, a tree is a graph in which there is exactly one

undirected path between each pair of nodes.undirected path between each pair of nodes.

–– An undirected graph can be represented as a set ofAn undirected graph can be represented as a set of
unordered pairs (called unordered pairs (called arcsarcs) of objects called) of objects called nodesnodes..

•• Definition of the set of rooted trees:Definition of the set of rooted trees:
–– Any single node Any single node rr is a rooted tree. is a rooted tree.

–– If If TT11, , ……, , TTnn are disjoint rooted trees with respective are disjoint rooted trees with respective
roots roots rr11, , ……, , rrnn, and , and rr is a node not in any of the is a node not in any of the TTii’’ss,,
then another rooted tree is {{then another rooted tree is {{rr,,rr11},},……,{,{rr,,rrnn}}}}))TT11))……))
TTnn..

CompSci 102 © Michael Frank
10.18

Illustrating Rooted Tree Def’n.

•• How rooted trees can be combined to formHow rooted trees can be combined to form

a new rooted treea new rooted tree……

T1

r1
T2

r2
Tn

rn

r

…

Draw some examples…

CompSci 102 © Michael Frank
10.19

Extended Binary Trees

•• A special case of rooted trees.A special case of rooted trees.

•• Recursive definition of Recursive definition of EBTsEBTs::

–– The empty set The empty set ** is an extended binary tree. is an extended binary tree.

–– If If TT11,,TT22 are disjoint are disjoint EBTsEBTs, then , then ee11))ee22)) TT11))TT22

is an EBT, where is an EBT, where ee11 = = ** if if TT11 = = **, and , and ee11 = =

{({(rr,,rr11)} if)} if TT11// ** and has root and has root rr11, and similarly, and similarly

for for ee22..

Draw some examples…

CompSci 102 © Michael Frank
10.20

Full Binary Trees

•• A special case of extended binary trees.A special case of extended binary trees.

•• Recursive definition of Recursive definition of FBTsFBTs::

–– A single node A single node rr is a full binary tree. is a full binary tree.

•• Note this is different from the EBT base case.Note this is different from the EBT base case.

–– If If TT11,,TT22 are disjoint are disjoint FBTsFBTs, then , then ee11))ee22))TT11))TT22, where , where ee11 = = ** if if TT11

= = **, and , and ee11 = {(= {(rr,,rr11)} if)} if TT11// **andand has root has root rr11, and similarly for , and similarly for ee22..

•• Note this is the same as the EBT recursive case!Note this is the same as the EBT recursive case!

–– Can simplify it to Can simplify it to ““If If TT11,,TT22 are disjoint are disjoint FBTsFBTs with roots with roots rr11 and and rr22, then, then

{({(rr, , rr11),(),(rr,,rr22)})})) TT11))TT22 is an FBT. is an FBT.””

Draw some examples…

CompSci 102 © Michael Frank
10.21

Structural Induction

•• Proving something about a recursivelyProving something about a recursively

defined object using an inductive proofdefined object using an inductive proof

whose structure mirrors the objectwhose structure mirrors the object’’ss

definition.definition.

•• Example problem: Example problem: Let 3Let 3##SS, and let , and let xx++yy##
SS if if xx,,yy##SS. Show that . Show that SS = { = {nn##ZZ++| (3|| (3|nn)})}

(the set of positive multiples of 3).(the set of positive multiples of 3).

CompSci 102 © Michael Frank
10.22

Example continued

•• Let 3Let 3##SS, and let , and let xx++yy##SS if if xx,,yy##SS.. Let Let AA = = {{nn##ZZ++| (3|| (3|nn)}.)}.

•• Theorem:Theorem: AA==SS. . Proof:Proof: We show that We show that AA++SS and and SS++AA..

–– To show To show AA++SS, show [, show [nn##ZZ++ '' (3| (3|nn)])])) nn##SS..

•• Inductive proof.Inductive proof. Let Let PP((nn) :) :" " nn##SS. Induction over positive multiples. Induction over positive multiples
of 3. Base case: of 3. Base case: nn=3, thus 3=3, thus 3##SS by by defdef’’nn. of . of SS. Inductive step: Given. Inductive step: Given
PP((nn), prove), prove PP((nn+3). By inductive +3). By inductive hyphyp., ., nn##SS, and 3, and 3##SS, so by , so by defdef’’nn of of
SS, , nn+3+3##SS..

–– To show To show SS++AA: let : let nn##SS, show , show nn##AA..

•• Structural inductive proof.Structural inductive proof. Let Let PP((nn):):""nn##AA. Two cases: . Two cases: nn=3 (base=3 (base

case), which is in case), which is in AA, or , or nn==xx++yy (recursive step). We know (recursive step). We know xx and and yy are are
positive, since neither rule generates negative numbers. So, positive, since neither rule generates negative numbers. So, xx<<nn and and
yy<<nn, and so we know , and so we know xx and and yy are in are in AA, by strong inductive hypothesis., by strong inductive hypothesis.
Since 3|Since 3|xx and 3| and 3|yy, we have 3|(, we have 3|(xx++yy), thus), thus xx++yy ## AA..

