| Today's topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | §3.4: Recursive Definitions |                       |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|------|--|--|
| <ul> <li>Recursion <ul> <li>Recursively defined functions</li> <li>Recursively defined sets</li> <li>Structural Induction</li> </ul> </li> <li>Reading: Sections 3.4</li> <li>Upcoming <ul> <li>Counting</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                             |                 | <ul> <li>In induction, we <i>prove</i> all members of an infinite set satisfy some predicate <i>P</i> by: <ul> <li>proving the truth of the predicate for larger members in terms of that of smaller members.</li> </ul> </li> <li>In <i>recursive definitions</i>, we similarly <i>define</i> a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by: <ul> <li>defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.</li> </ul> </li> <li>In <i>structural induction</i>, we inductively prove properties of recursively-defined objects in a way that parallels the objects' own recursive definitions.</li> </ul> |                             |                       |      |  |  |
| CompSci 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | © Michael Frank | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CompSci 102                 | © Michael Frank       | 10.2 |  |  |
| Recursi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recursiv                    | vely Defined Function | S    |  |  |
| <ul> <li><i>Recursion</i> is the general term for the practice of defining an object in terms of <i>itself</i> <ul> <li>or of part of itself</li> <li>This may seem circular, but it isn't necessarily.</li> </ul> </li> <li>An inductive proof establishes the truth of <i>P</i>(<i>n</i>+1) <i>recursively</i> in terms of <i>P</i>(<i>n</i>).</li> <li>There are also recursive <i>algorithms</i>, <i>definitions</i>, <i>functions</i>, <i>sequences</i>, <i>sets</i>, and other structures.</li> </ul> |                 | <ul> <li>Simplest case: One way to define a function f:N→S (for any set S) or series a<sub>n</sub>=f(n) is to:</li> <li>Define f(0).</li> <li>For n&gt;0, define f(n) in terms of f(0),,f(n-1).</li> <li>E.g.: Define the series a<sub>n</sub> := 2<sup>n</sup> recursively:</li> <li>Let a<sub>0</sub> := 1.</li> <li>For n&gt;0, let a<sub>n</sub> := 2a<sub>n-1</sub>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |                             |                       |      |  |  |
| CompSci 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | © Michael Frank | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CompSci 102                 | © Michael Frank       | 10.4 |  |  |





#### Lamé Proof, continued **Recursively Defined Sets** • Since $r_0 \ge r_1 > r_2 > \dots > r_n$ , each quotient $q_i \equiv \lfloor r_{i-1}/r_i \rfloor \ge 1$ . • An infinite set S may be defined • Since $r_{n-1} = r_n q_n$ and $r_{n-1} > r_n$ , $q_n \ge 2$ . recursively, by giving: • So we have the following relations between *r* and *f*: - A small finite set of *base* elements of *S*. $r_n \ge 1 = f_2$ – A rule for constructing new elements of S from $r_{n-1} \ge 2r_n \ge 2f_2 = f_3$ previously-established elements. $r_{n-2} \ge r_{n-1} + r_n \ge f_2 + f_3 = f_4$ - Implicitly, S has no other elements but these. $r_2 \ge r_3 + r_4 \ge f_{n-1} + f_{n-2} = f_n$ • Example: Let $3 \in S$ , and let $x+y \in S$ if $x, y \in S$ . $b = r_1 \ge r_2 + r_3 \ge f_n + f_{n-1} = f_{n+1}.$ • Thus, if $n \ge 2$ divisions are used, then $b \ge f_{n+1} > \alpha^{n-1}$ . What is S? - Thus, $\log_{10} b > \log_{10}(a^{n-1}) = (n-1)\log_{10} a \approx (n-1)0.208 > (n-1)/5.$ - If b has k decimal digits, then $\log_{10} b \le k$ , so $n-1 \le 5k$ , so $n \le 5k$ . CompSci 102 © Michael Frank CompSci 102 © Michael Frank 10 13 10 14 The Set of All Strings **Other Easy String Examples** • Given an alphabet $\Sigma$ , the set $\Sigma^*$ of all • Give recursive definitions for: strings over $\Sigma$ can be recursively defined by: - The concatenation of strings $w_1 \cdot w_2$ . $\varepsilon \in \Sigma^*$ ( $\varepsilon :\equiv \dots$ , the empty string) Book - The length $\ell(w)$ of a string w. uses $\lambda$ $w \in \Sigma^* \land x \in \Sigma \rightarrow wx \in \Sigma^*$ - Well-formed formulae of propositional logic involving T, F, propositional variables, and • **Exercise:** Prove that this definition is operators in $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ . equivalent to our old one: $\Sigma^* :=$ - Well-formed arithmetic formulae involving variables, numerals, and ops in $\{+, -, *, \uparrow\}$ . n∈N CompSci 102 © Michael Frank CompSci 102 C Michael Frank 10 15 10 16

## **Rooted Trees**

- Trees will be covered in CompSci 130.
  - Briefly, a tree is a graph in which there is exactly one undirected path between each pair of nodes.
  - An undirected graph can be represented as a set of unordered pairs (called arcs) of objects called nodes.
- Definition of the set of rooted trees:
  - Any single node r is a rooted tree.
  - If  $T_1, ..., T_n$  are disjoint rooted trees with respective roots  $r_1, ..., r_n$ , and r is a node not in any of the  $T_i$ 's, then another rooted tree is  $\{\{r, r_1\}, ..., \{r, r_n\}\} \cup T_1 \cup ... \cup$  $T_n$ .

© Michael Frank



# • How rooted trees can be combined to form a new rooted tree... Draw some examples... CompSci 102 © Michael Frank 10.18

Illustrating Rooted Tree Def'n.

# **Full Binary Trees**

- A special case of extended binary trees.
- Recursive definition of FBTs:
  - A single node r is a full binary tree.
    - Note this is different from the EBT base case.
  - If  $T_1, T_2$  are disjoint FBTs, then  $e_1 \cup e_2 \cup T_1 \cup T_2$ , where  $e_1 = \emptyset$  if  $T_1$ 
    - $=\emptyset$ , and  $e_1 = \{(r,r_1)\}$  if  $T_1 \neq \emptyset$  and has root  $r_1$ , and similarly for  $e_2$ .
    - Note this is the same as the EBT recursive case!
      - Can simplify it to "If  $T_1, T_2$  are disjoint FBTs with roots  $r_1$  and  $r_2$ , then  $\{(r, r_1), (r, r_2)\} \cup T_1 \cup T_2$  is an FBT."

Draw some examples.

CompSci 102

CompSci 102

© Michael Frank

10 19

C Michael Frank

10.20

Draw some examples.

### **Structural Induction**

- Proving something about a recursively defined object using an inductive proof whose structure mirrors the object's definition.
- Example problem: Let  $3 \in S$ , and let  $x+y \in S$  if  $x,y \in S$ . Show that  $S = \{n \in \mathbb{Z}^+ | (3|n)\}$  (the set of positive multiples of 3).

#### **Example continued**

- Let  $3 \in S$ , and let  $x+y \in S$  if  $x,y \in S$ . Let  $A = \{n \in \mathbb{Z}^+ | (3|n)\}$ .
- **Theorem:** A=S. **Proof:** We show that  $A\subseteq S$  and  $S\subseteq A$ .
  - To show  $A \subseteq S$ , show  $[n \in \mathbb{Z}^+ \land (3|n)] \rightarrow n \in S$ .
    - **Inductive proof.** Let  $P(n) :\equiv n \in S$ . Induction over positive multiples of 3. Base case: n=3, thus  $3 \in S$  by def'n. of *S*. Inductive step: Given P(n), prove P(n+3). By inductive hyp.,  $n \in S$ , and  $3 \in S$ , so by def'n of *S*,  $n+3 \in S$ .
  - To show  $S \subseteq A$ : let  $n \in S$ , show  $n \in A$ .
    - Structural inductive proof. Let  $P(n) := n \in A$ . Two cases: n=3 (base case), which is in A, or n=x+y (recursive step). We know x and y are positive, since neither rule generates negative numbers. So, x < n and y < n, and so we know x and y are in A, by strong inductive hypothesis. Since 3|x and 3|y, we have 3|(x+y), thus  $x+y \in A$ .

| CompSci 102 | © Michael Frank | 10.21 | CompSci 102 | © Michael Frank | 10.22 |
|-------------|-----------------|-------|-------------|-----------------|-------|
|             |                 |       |             |                 |       |