Today's topics

- Counting
- Sum rule
- Product rule
- Tree diagrams
- Inclusion/exclusion
- Reading: Sections 4.1
- Upcoming
- Permutations \& Combinations

Sum and Product Rules (§4.1)

- Let m be the number of ways to do task 1 and n the number of ways to do task 2 ,
- with each number independent of how the other task is done,
- and also assume that no way to do task 1 simultaneously also accomplishes task 2.
- Then, we have the following rules:
- The sum rule: The task "do either task 1 or task 2, but not both" can be done in $m+n$ ways.
- The product rule: The task "do both task 1 and task 2" can be done in $m n$ ways.

Combinatorics

- The study of the number of ways to put things together into various combinations.
- E.g. In a contest entered by 100 people, - how many different top-10 outcomes could occur?
- E.g. If a password is 6-8 letters and/or digits,
- how many passwords can there be?

Set Theoretic Version

- If A is the set of ways to do task 1 , and B the set of ways to do task 2 , and if A and B are disjoint, then:
- The ways to do either task 1 or 2 are $A \cup B$, and $|A \cup B|=|A|+|B|$
- The ways to do both task 1 and 2 can be represented as $A \times B$, and $|A \times B|=|A| \cdot|B|$

IP Address Example

- Some facts about the Internet Protocol, version 4:
- Valid computer addresses are in one of 3 types:
- A class A IP address contains a 7 -bit "netid" $\neq \mathbf{1}^{7}$, and a 24-bit "hostid"
- A class B address has a 14 -bit netid and a 16 -bit hostid.
- A class C addr. Has 21 -bit netid and an 8 -bit hostid.
- The 3 classes have distinct headers $(0,10,110)$
- Hostids that are all 0 s or all 1 s are not allowed.
- How many valid computer addresses are there?

Inclusion/Exclusion Example

- Some hypothetical rules for passwords:
- Passwords must be 2 characters long.
- Each character must be a letter a-z, a digit 0-9, or one of the 10 punctuation characters ! @ \#\$\%^\&*().
- Each password must contain at least 1 digit or punctuation character.

Inclusion-Exclusion Principle

 (§§4.1 \& 6.5)- Suppose that $k \leq m$ of the ways of doing task 1 also simultaneously accomplish task 2.
- And thus are also ways of doing task 2.
- Then, the number of ways to accomplish "Do either task 1 or task 2 " is $m+n-k$.
- Set theory: If A and B are not disjoint, then $|A \cup B|=|A|+|B|-|A \cap B|$.
- If they are disjoint, this simplifies to $|A|+|B|$.

Setup of Problem

- A legal password has a digit or puctuation character in position 1 or position 2.
- These cases overlap, so the principle applies.
- (\# of passwords w. OK symbol in position \#1) $=(10+10) \cdot(10+10+26)$
- (\# w. OK sym. in pos. \#2): also $20 \cdot 46$
- (\# w. OK sym both places): $20 \cdot 20$
- Answer:

Pigeonhole Principle (§4.2)

- A.k.a. the "Dirichlet drawer principle"
- If $\geq k+1$ objects are assigned to k places, then at least 1 place must be assigned ≥ 2 objects.
- In terms of the assignment function:
- If $f: A \rightarrow B$ and $|A| \geq|B|+1$, then some element of B has ≥ 2 preimages under f.
- I.e., f is not one-to-one.

Fun Pigeonhole Proof (Ex. 4, p.314)

- Theorem: $\forall n \in \mathbf{N}, \exists$ a multiple $m>0$ of $n \ni$ m has only 0 's and 1 's in its decimal expansion!
- Proof: Consider the $n+1$ decimal integers $1,11,111, \ldots, 1 \cdot 1$. They have only n possible $\underbrace{1}_{n+1} \quad$ residues $\bmod n$. So, take the difference of two that have the same residue. The result is the answer!

Example of Pigeonhole Principle

- There are 101 possible numeric grades (0% 100%) rounded to the nearest integer.
- Also, there are > 101 students in this class.
- Therefore, there must be at least one (rounded) grade that will be shared by at least 2 students at the end of the semester.
- I.e., the function from students to rounded grades is not a one-to-one function.

Another Fun Example

- Suppose that next June, the Durham Bulls play at least 1 game a day, but ≤ 45 games total. Show there must be some sequence of consecutive days in June during which they play exactly 14 games.
- Proof: Let a_{j} be the number of games played on or before day j. Then, $a_{1}, \ldots, a_{30} \in \mathbf{Z}^{+}$is a sequence of 30 distinct integers with $1 \leq a_{j} \leq 45$. Therefore $a_{1}+14, \ldots, a_{30}+14$ is a sequence of 30 distinct integers with $15 \leq a_{j}+14 \leq 59$. Thus, $\left(a_{1}, \ldots, a_{30}, a_{1}+14, \ldots, a_{30}+14\right)$ is a sequence of 60 integers from the set $\{1, . ., 59\}$. By the Pigeonhole Principle, two of them must be equal, but $a_{i} \neq a_{j}$ for $i \neq j$. So, $\exists i j: a_{i}=$ $a_{j}+14$. Thus, 14 games were played on days $a_{j}+1, \ldots, a_{i}$.

