Today's topics	Why Probability?		
 Probability Definitions Events Conditional probability Reading: Sections 5.1-5.3 Upcoming Expected value 	 In the real world, we often don't know whether a given proposition is true or false. Probability theory gives us a way to reason about propositions whose truth is <i>uncertain</i>. It is useful in weighing evidence, diagnosing problems, and analyzing situations whose exact details are unknown. 		
CompSci 102 © Michael Frank 13.1	CompSci 102 © Michael Frank 13.2		
<section-header><list-item><list-item><list-item><list-item><list-item> Random Variable" <i>V</i> is any variable whose value is unknown, or whose value depends on the precise situation. <i>F.g.</i>, the number of students in class today. Whether it will rain tonight (Boolean variable) Let the domain of <i>V</i> be dom[<i>V</i>]={<i>v</i>₁,,<i>v</i>_n} Infinite domains can also be dealt with if needed. The proposition <i>V</i>=<i>v</i>_i may have an uncertain truth value, and may be assigned a <i>probability</i>. </list-item></list-item></list-item></list-item></list-item></section-header>	 Information Capacity I[V] of a random variable V with a finite domain can be defined as the logarithm (with indeterminate base) of the size of the domain of V, I[V] = log dom[V] . 1 The log's base determines the associated information unit! 1 Ating the log base 2 yields an information unit of 1 bit b = log 2. 2 Related units include the nybble N = 4 b = log 16 (1 hexadecimal digit). 3 and more famously, the byte B = 8 b = log 256. 3 the net, or e-fold n = log e, widely known in thermodynamics as Boltzmann's constant k. 4 be log decade or order of magnitude (D = log 10). 4 the decibel or dB = D/10 = (log 10)/10 ≈ log 12.589. 4 Example: An 8-bit register has 2⁸ = 256 possible values. 4 the information capacity is thus: log 256 = 8 log 2 = 8 bl. 6 reg. 10 + 0.00 + 0.		

Experiments & Sample Spaces

- A (stochastic) *experiment* is any process by which a given random variable V gets assigned some *particular* value, and where this value is not necessarily known in advance.
 - We call it the "actual" value of the variable, as determined by that particular experiment.
- The *sample space* S of the experiment is just the domain of the random variable, S = dom[V].
- The *outcome* of the experiment is the specific value v_i of the random variable that is selected.

© Michael Frank

Events An event E is any set of possible outcomes in S... That is, E ⊆ S = dom[V]. E.g., the event that "less than 50 people show up for our next class" is represented as the set {1, 2, ..., 49} of values of the variable V = (# of people here next class). We say that event E occurs when the actual value of V is in E, which may be written V∈E. Note that V∈E denotes the proposition (of uncertain truth) asserting that the actual outcome (value of V) will be one of the outcomes in the set E.

Four Definitions of Probability

• Several alternative definitions of

• They have different strengths &

probability are commonly encountered:

weaknesses, philosophically speaking.

cases that are typically encountered.

- Frequentist, Bayesian, Laplacian, Axiomatic

© Michael Frank

Probability

- The probability $p = \Pr[E] \in [0,1]$ of an event E is a real number representing our degree of certainty that E will occur.
 - If Pr[E] = 1, then E is absolutely certain to occur,
 thus V∈E has the truth value True.
 - If Pr[E] = 0, then E is absolutely certain *not* to occur,
 thus V∈E has the truth value False.
 - If $Pr[E] = \frac{1}{2}$, then we are *maximally uncertain* about whether *E* will occur; that is,

© Michael Frank

- $V \in E$ and $V \notin E$ are considered *equally likely*.
- How do we interpret other values of *p*?

Note: We could also define probabilities for more general propositions, as well as events.

CompSci 102

CompSci 102

CompSci 102

135

13.7

© Michael Frank

- But fortunately, they coincide with each other

and work well together, in the majority of

13.6

Probability: Frequentist Definition

The probability of an event *E* is the limit, as *n→∞*, of the fraction of times that we find *V∈E* over the course of *n* independent repetitions of (different instances of) the same experiment.

• Some problems with this definition:

 $\Pr[E] := \lim_{n \to \infty} \frac{n_{V \in E}}{n}$

- It is only well-defined for experiments that can be independently repeated, infinitely many times!
 - or at least, if the experiment can be repeated in principle, *e.g.*, over some hypothetical ensemble of (say) alternate universes.
- It can never be measured exactly in finite time!
- Advantage: It's an objective, mathematical definition.

CompSci 102	© Michael Frank	13.9	Com
			1

Probability: Laplacian Definition

- First, assume that all individual outcomes in the sample space are *equally likely* to each other...
 - Note that this term still needs an operational definition!
- Then, the probability of any event *E* is given by, $\Pr[E] = |E|/|S|$. Very simple!
- **Problems:** Still needs a definition for *equally likely*, and depends on the existence of *some* finite sample space *S* in which all outcomes in *S* are, in fact, equally likely.

Probability: Bayesian Definition

- Suppose a rational, profit-maximizing entity *R* is offered a choice between two rewards:
 - Winning **\$1** if and only if the event *E* actually occurs.
 - Receiving *p* dollars (where $p \in [0,1]$) unconditionally.
- If *R* can honestly state that he is completely indifferent between these two rewards, then we say that *R*'s probability for *E* is *p*, that is, $\Pr_R[E] := p$.
- **Problem:** It's a subjective definition; depends on the reasoner *R*, and his knowledge, beliefs, & rationality.
 - The version above additionally assumes that the utility of money is linear.
 - This assumption can be avoided by using "utils" (utility units) instead of dollars.

© Michael Frank

13.10

Probability: Axiomatic Definition

- Let *p* be any total function $p:S \rightarrow [0,1]$ such that $\sum_{s} p(s) = 1$.
- Such a *p* is called a *probability distribution*.
- Then, the *probability under p* of any event *E*⊆*S* is just:

 $\Pr_p[E] := \sum_{i=1}^{n} p(s)$

- Advantage: Totally mathematically well-defined!
 - This definition can even be extended to apply to infinite sample spaces, by changing $\sum \rightarrow \int$, and calling *p* a *probability density function* or a probability *measure*.
- Problem: Leaves operational meaning unspecified.

13.11

CompSci 102

Probabilities of Mutually Complementary Events

- Let *E* be an event in a sample space *S*.
- Then, \overline{E} represents the *complementary* event, saying that the actual value of $V \notin E$.
- Theorem: $\Pr[\overline{E}] = 1 \Pr[E]$
 - This can be proved using the Laplacian defi (|S| -
 - 0

© Michael Frank

nition of probability, since $Pr[\overline{E}] = \overline{E} / S = - E / S = 1 - Pr[E]$.	• An event <i>E</i> blue": <i>E</i> =
E / S = 1 - E / S = 1 - 11[E].	What are the
	• What is the

13 13

Example 1: Balls-and-Urn

- Suppose an urn contains 4 blue balls and 5 red balls.
- An example experiment: Shake up the urn, reach in (without looking) and pull out a ball.
- A random variable V: Identity of the chosen ball.
- The sample space S: The set of all possible values of V:

- In this case, $S = \{b_1, \dots, b_n\}$

"The ball chosen is

- e odds in favor of E?
- probability of E? (Use Laplacian def'n.) CompSci 102 © Michael Frank 13 14

Example 2: Seven on Two Dice

• **Experiment:** Roll a pair of fair (unweighted) 6-sided dice.

- Describe a sample space for this experiment that fits the Laplacian definition.
- Using this sample space, represent an event E expressing that "the upper spots sum to 7."
- What is the probability of *E*?

Probability of Unions of Events

- Let $E_1, E_2 \subseteq S = \operatorname{dom}[V]$.
- Then we have: **Theorem**: $\Pr[E_1 \cup E_2] = \Pr[E_1] + \Pr[E_2] - \Pr[E_1 \cap E_2]$
 - By the inclusion-exclusion principle, together with the Laplacian definition of probability.
- You should be able to easily flesh out the proof yourself at home.

CompSci 102

13 15

CompSci 102

C Michael Frank

Mutually Exclusive Events

- Two events E_1, E_2 are called *mutually exclusive* if they are disjoint: $E_1 \cap E_2 = \emptyset$
 - Note that two mutually exclusive events *cannot both occur* in the same instance of a given experiment.
- For mutually exclusive events, $\Pr[E_1 \cup E_2] = \Pr[E_1] + \Pr[E_2].$

Independent Events

- Follows from the sum rule of combinatorics.

© Michael Frank

• Two events *E*,*F* are called *independent* if

• Relates to the product rule for the number

of ways of doing two independent tasks.

• **Example:** Flip a coin, and roll a die.

 $Pr[(coin shows heads) \cap (die shows 1)] =$

 $\Pr[E \cap F] = \Pr[E] \cdot \Pr[F].$

• A set $E = \{E_1, E_2, ...\}$ of events in the sample space S is called *exhaustive* iff $|E_i = S|$. • An exhaustive set *E* of events that are an mutually exclusive with each other has the property that $\sum \Pr[E_i] = 1.$ • You should be able to easily prove this theorem, using either the Laplacian or Axiomatic definitions of probability from earlier. CompSci 102 © Michael Frank 13 17 13 18 **Conditional Probability** • Let *E*, *F* be any events such that $\Pr[F] > 0$. • Then, the conditional probability of *E* given *F*, written $\Pr[E|F]$, is defined as $\Pr[E|F] := \Pr[E \cap F] / \Pr[F].$ • This is what our probability that *E* would turn out to occur should be, if we are given *only* the information that *F* occurs. • If *E* and *F* are independent then $\Pr[E|F] = \Pr[E]$. Pr[coin is heads] \times Pr[die is 1] = $\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}$. $\therefore \Pr[E|F] = \Pr[E \cap F] / \Pr[F] = \Pr[E] \times \Pr[F] / \Pr[F] = \Pr[E]$

Exhaustive Sets of Events

CompSci 102

13 19

CompSci 102

Prior and Posterior Probability

- Suppose that, before you are given any information about the outcome of an experiment, your personal probability for an event *E* to occur is p(E) = Pr[E].
 - The probability of E in your original probability distribution p is called the *prior* probability of *E*.
 - This is its probability *prior* to obtaining any information about the outcome.
- Now, suppose someone tells you that some event F (which may overlap with E) actually occurred in the experiment.
 - Then, you should *update* your personal probability for event *E* to occur. to become $p'(E) = \Pr[E|F] = p(E \cap F)/p(F)$.
 - The conditional probability of *E*, given *F*.
 - The probability of *E* in your *new* probability distribution p' is called the *posterior* probability of *E*.
 - This is its probability *after* learning that event *F* occurred.
- After seeing F, the posterior distribution p' is defined by letting $p'(v) = p(\{v\} \cap F)/p(F)$ for each individual outcome $v \in S$.

CompSci	102
---------	-----

© Michael Frank

13 21

letters

Visualizing Conditional Probability

- If we are given that event F occurs, then - Our attention gets restricted to the subspace F.
- Our *posterior* probability for *E* (after seeing F) corresponds

to the *fraction* of F where E occurs also.

• Thus, p'(E)= $p(E \cap F)/p(F)$

Bayes' Rule

CompSci 102

• One way to compute the probability that a hypothesis *H* is correct, given some data *D*:

 $\Pr[H \mid D] = \frac{\Pr[D \mid H] \cdot \Pr[H]}{\Pr[D \mid H] \cdot \Pr[H]}$

13.22

Rev. Thomas Bayes 1702-1761

13 24

- This follows directly from the definition of conditional probability! (Exercise: Prove it)
- This rule is the foundation of *Bayesian methods* for probabilistic reasoning, which are very powerful, and widely used in artificial intelligence applications:
 - For data mining, automated diagnosis, pattern recognition, statistical modeling, even evaluating scientific hypotheses!

CompSci 102

© Michael Frank

Conditional Probability Example

- Suppose I choose a single letter out of the 26-letter English alphabet, totally at random.
 - Use the Laplacian assumption on the sample space $\{a,b,..,z\}$. 1st 9

vowels

w

Sample Space S

Z

у u

х

р

S

- What is the (prior) probability that the letter is a vowel?
 - $\Pr[Vowel] = /$.
- Now, suppose I tell you that the letter chosen happened to be in the first 9 letters of the alphabet.
 - Now, what is the conditional (or posterior) probability that the letter is a vowel, given this information?
 - Pr[Vowel | First9] = / .

CompSci 102

C Michael Frank

q m

13 23