Today's topics

- Probability
- Definitions
- Events
- Conditional probability
- Reading: Sections 5.1-5.3
- Upcoming
- Expected value

Random Variables

- A "random variable" V is any variable whose value is unknown, or whose value depends on the precise situation.
- E.g., the number of students in class today
- Whether it will rain tonight (Boolean variable)
- Let the domain of V be $\operatorname{dom}[V] \equiv\left\{v_{1}, \ldots, v_{n}\right\}$
- Infinite domains can also be dealt with if needed.
- The proposition $V=v_{i}$ may have an uncertain truth value, and may be assigned a probability.

Why Probability?

- In the real world, we often don't know whether a given proposition is true or false.
- Probability theory gives us a way to reason about propositions whose truth is uncertain.
- It is useful in weighing evidence, diagnosing problems, and analyzing situations whose exact details are unknown.

Information Cabacitv

- The information capacity $\mathbb{[}[V]$ of a random variable V with a finite domain can be defined as the logarithm (with indeterminate base) of the size of the domain of V, $\mathrm{I}[V]: \equiv \log |\operatorname{dom}[V]|$.
- The log's base determines the associated information unit!
- Taking the \log base 2 yields an information unit of 1 bit $\mathrm{b}=\log 2$. - Related units include the nybble $\mathrm{N}=4 \mathrm{~b}=\log 16$ (1 hexadecimal digit), - and more famously, the byte $\mathrm{B}=8 \mathrm{~b}=\log 256$.
- Other common logarithmic units that can be used as units of information:
- the nat, or e-fold $\mathrm{n}=\log \mathrm{e}$,
» widely known in thermodynamics as Boltzmann's constant k. - the bel or decade or order of magnitude $(\mathrm{D}=\log 10)$,
- and the decibel or $\mathrm{dB}=\mathrm{D} / 10=(\log 10) / 10 \approx \log 1.2589$
- Example: An 8-bit register has $2^{8}=256$ possible values.
- Its information capacity is thus: $\log 256=8 \log 2=8 \mathrm{~b}$!
- Or 2 N , or 1 B , or $\log _{\mathrm{e}} 256 \approx 5.545 \mathrm{n}$, or $\log _{10} 256=2.408 \mathrm{D}$, or 24.08 dB

Experiments \& Sample Spaces

- A (stochastic) experiment is any process by which a given random variable V gets assigned some particular value, and where this value is not necessarily known in advance.
- We call it the "actual" value of the variable, as determined by that particular experiment.
- The sample space S of the experiment is just the domain of the random variable, $S=\operatorname{dom}[\mathrm{V}]$.
- The outcome of the experiment is the specific value v_{i} of the random variable that is selected.

Probability

- The probability $p=\operatorname{Pr}[E] \in[0,1]$ of an event E is a real number representing our degree of certainty that E will occur.
- If $\operatorname{Pr}[E]=1$, then E is absolutely certain to occur, - thus $V \in E$ has the truth value True.
- If $\operatorname{Pr}[E]=0$, then E is absolutely certain not to occur, - thus $V \in E$ has the truth value False.
- If $\operatorname{Pr}[E]=1 / 2$, then we are maximally uncertain about whether E will occur; that is,
- $V \in E$ and $V \notin E$ are considered equally likely.
- How do we interpret other values of p ?

Note: We could also define probabilities for more general propositions, as well as events.

Events

- An event E is any set of possible outcomes in $S \ldots$
- That is, $E \subseteq S=\operatorname{dom}[V]$.
- E.g., the event that "less than 50 people show up for our next class" is represented as the set $\{1,2, \ldots, 49\}$ of values of the variable $V=(\#$ of people here next class).
- We say that event E occurs when the actual value of V is in E, which may be written $V \in E$.
- Note that $V \in E$ denotes the proposition (of uncertain truth) asserting that the actual outcome (value of V) will be one of the outcomes in the set E.

Four Definitions of Probability

- Several alternative definitions of probability are commonly encountered:
- Frequentist, Bayesian, Laplacian, Axiomatic
- They have different strengths \& weaknesses, philosophically speaking.
- But fortunately, they coincide with each other and work well together, in the majority of cases that are typically encountered.

Probability: Frequentist Definition

- The probability of an event E is the limit, as $n \rightarrow \infty$, of the fraction of times that we find $V \in E$ over the course of n independent repetitions of (different instances of) the same experiment.
- Some problems with this definition:

$$
\operatorname{Pr}[E]: \equiv \lim _{n \rightarrow \infty} \frac{n_{V \in E}}{n}
$$

- It is only well-defined for experiments that can be independently repeated, infinitely many times!
- or at least, if the experiment can be repeated in principle, e.g., over some hypothetical ensemble of (say) alternate universes.
- It can never be measured exactly in finite time!
- Advantage: It's an objective, mathematical definition.

Probability: Laplacian Definition

- First, assume that all individual outcomes in the sample space are equally likely to each other...
- Note that this term still needs an operational definition!
- Then, the probability of any event E is given by,

$$
\operatorname{Pr}[E]=|E| /|S| . \quad \text { Very simple! }
$$

- Problems: Still needs a definition for equally likely, and depends on the existence of some finite sample space S in which all outcomes in S are, in fact, equally likely.

Probability: Bayesian Definition

- Suppose a rational, profit-maximizing entity R is offered a choice between two rewards:
- Winning $\$ 1$ if and only if the event E actually occurs.
- Receiving p dollars (where $p \in[0,1]$) unconditionally.
- If R can honestly state that he is completely indifferent between these two rewards, then we say that R 's probability for E is p, that is, $\operatorname{Pr}_{R}[E]: \equiv p$.
- Problem: It's a subjective definition; depends on the reasoner R, and his knowledge, beliefs, \& rationality.
- The version above additionally assumes that the utility of money is linear.
- This assumption can be avoided by using "utils" (utility units) instead of dollars.

Probability: Axiomatic Definition

- Let p be any total function $p: S \rightarrow[0,1]$ such that

$$
\sum_{s} p(s)=1
$$

- Such a p is called a probability distribution.

- Advantage: Totally mathematically well-defined!
- This definition can even be extended to apply to infinite sample spaces, by changing $\sum \rightarrow \int$, and calling p a probability density function or a probability measure.
- Problem: Leaves operational meaning unspecified.

Probabilities of Mutually

Complementary Events

- Let E be an event in a sample space S.
- Then, \bar{E} represents the complementary event, saying that the actual value of $V \notin E$.
- Theorem: $\operatorname{Pr}[\bar{E}]=1-\operatorname{Pr}[E]$
- This can be proved using the Laplacian definition of probability, since $\operatorname{Pr}[E]=|E T /|S|=$ $(|S|-|E|) /|S|=1-|E| /|S|=1-\operatorname{Pr}[E]$.
- Other definitions can also be used to prove it.

Example 2: Seven on Two Dice

- Experiment: Roll a pair of fair (unweighted) 6 -sided dice.
- Describe a sample space for this
 experiment that fits the Laplacian definition.
- Using this sample space, represent an event E expressing that "the upper spots sum to 7."
- What is the probability of E ?

Example 1: Balls-and-Urn

- Suppose an urn contains 4 blue balls and 5 red balls.
- An example experiment: Shake up the urn, reach in (without looking) and pull out a ball.
- A random variable V : Identity of the chosen ball.
- The sample space S : The set of all possible values of V :
- In this case, $S=\left\{b_{1}, \ldots, b_{9}\right\}$
- An event E : "The ball chosen is blue": $E=\{$ \qquad \}
- What are the odds in favor of E ?

- What is the probability of E ? (Use Laplacian def'n.)

Probability of Unions of Events

- Let $E_{1}, E_{2} \subseteq S=\operatorname{dom}[V]$.
- Then we have: Theorem:
$\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]-\operatorname{Pr}\left[E_{1} \cap E_{2}\right]$
- By the inclusion-exclusion principle, together with the Laplacian definition of probability.
- You should be able to easily flesh out the proof yourself at home.

Mutually Exclusive Events

- Two events E_{1}, E_{2} are called mutually exclusive if they are disjoint: $E_{1} \cap E_{2}=\varnothing$
- Note that two mutually exclusive events cannot both occur in the same instance of a given experiment.
- For mutually exclusive events,

$$
\operatorname{Pr}\left[E_{1} \cup E_{2}\right]=\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] .
$$

- Follows from the sum rule of combinatorics.

Independent Events

- Two events E, F are called independent if

$$
\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \cdot \operatorname{Pr}[F] .
$$

- Relates to the product rule for the number of ways of doing two independent tasks.
- Example: Flip a coin, and roll a die.
$\operatorname{Pr}[($ coin shows heads $) \cap$ (die shows 1$)]=$
$\operatorname{Pr}[$ coin is heads $] \times \operatorname{Pr}[$ die is 1$]=1 / 2 \times 1 / 6=1 / 12$.

Exhaustive Sets of Events

- A set $E=\left\{E_{1}, E_{2}, \ldots\right\}$ of events in the sample space S is called exhaustive iff $\bigcup E_{i}=S$.
- An exhaustive set \boldsymbol{E} of events that are all mutually exclusive with each other has the property that

$$
\sum \operatorname{Pr}\left[E_{i}\right]=1 .
$$

- You should be able to easily prove this theorem, using either the Laplacian or Axiomatic definitions of probability from earlier.

Conditional Probability

- Let E, F be any events such that $\operatorname{Pr}[F]>0$.
- Then, the conditional probability of E given F, written $\operatorname{Pr}[E \mid F]$, is defined as

$$
\operatorname{Pr}[E \mid F]: \equiv \operatorname{Pr}[E \cap F] / \operatorname{Pr}[F]
$$

- This is what our probability that E would turn out to occur should be, if we are given only the information that F occurs.
- If E and F are independent then $\operatorname{Pr}[E \mid F]=\operatorname{Pr}[E]$.

$$
\because \operatorname{Pr}[E \mid F]=\operatorname{Pr}[E \cap F] / \operatorname{Pr}[F]=\operatorname{Pr}[E] \times \operatorname{Pr}[F] / \operatorname{Pr}[F]=\operatorname{Pr}[E]
$$

Prior and Posterior Probability

- Suppose that, before you are given any information about the outcome of an experiment, your personal probability for an event E to occur is $p(E)=\operatorname{Pr}[E]$.
- The probability of E in your original probability distribution p is called the prior probability of E.
- This is its probability prior to obtaining any information about the outcome.
- Now, suppose someone tells you that some event F (which may overlap with E) actually occurred in the experiment.
- Then, you should update your personal probability for event E to occur,
to become $p^{\prime}(E)=\operatorname{Pr}[E \mid F]=p(E \cap F) / p(F)$.
- The conditional probability of E, given F.
- The probability of E in your new probability distribution p^{\prime} is called the posterior probability of E.
- This is its probability after learning that event F occurred.
- After seeing F, the posterior distribution p^{\prime} is defined by letting $p^{\prime}(v)=p(\{v\} \cap F) / p(F)$ for each individual outcome $v \in S$.

Conditional Probability Example

- Suppose I choose a single letter out of the 26 -letter English alphabet, totally at random.
- Use the Laplacian assumption on the sample space $\{\mathrm{a}, \mathrm{b}, . ., \mathrm{z}\}$. ${ }^{\text {st }} 9$
- What is the (prior) probability that the letter is a vowel?

$$
\text { - } \operatorname{Pr}[\text { Vowel] }=\ldots \text { / __. }
$$

- Now, suppose I tell you that the letter chosen happened to be in the first 9 letters of the alphabet.

> - Now, what is the conditional (or posterior) probability that the letter is a vowel, given this information?

- Pr[Vowel | First9] = \qquad

Visualizing Conditional Probability

- If we are given that event F occurs, then
- Our attention gets restricted to the subspace F.
- Our posterior probability for E (after seeing F) correspnnds to the fraction of F where E occurs also.
- Thus, $p^{\prime}(E)=$ $p(E \cap F) / p(F)$.

CompSci 102

© Michael Frank
13.22

Bayes' Rule

- One way to compute the probability that a hypothesis H is correct, given some data D :

$$
\operatorname{Pr}[H \mid D]=\frac{\operatorname{Pr}[D \mid H] \cdot \operatorname{Pr}[H]}{\operatorname{Pr}[D]}
$$

- This follows directly from the definition of conditional probability! (Exercise: Prove it)
- This rule is the foundation of Bayesian methods for probabilistic reasoning, which are very powerful, and widely used in artificial intelligence applications:
- For data mining, automated diagnosis, pattern recognition, statistical modeling, even evaluating scientific hypotheses!

