## Today's topics

## - Probability

- Expected value
- Reading: Sections 5.3
- Upcoming
- Probabilistic inference


## Derived Random Variables

- Let $S$ be a sample space over values of a random variable $V$ (representing possible outcomes).
- Then, any function $f$ over $S$ can also be considered to be a random variable (whose actual value $f(V)$ is derived from the actual value of $V$ ).
- If the range $R=$ range $[f]$ of $f$ is numeric, then the mean value $\operatorname{Ex}[f]$ of $f$ can still be defined, as

$$
\hat{f}=\mathbf{E x}[f]=\sum_{s \in S} p(s) \cdot f(s)
$$

## Expectation Values

- For any random variable $V$ having a numeric domain, its expectation value or expected value or weighted average value or (arithmetic) mean value $\mathbf{E x}[V]$, under the probability distribution $\operatorname{Pr}[v]=p(v)$, is defined as

$$
\hat{V}: \equiv \mathbf{E x}[V]: \equiv \mathbf{E x}_{p}[V]: \equiv \sum_{v \in \operatorname{dom}[V]} v \cdot p(v) .
$$

- The term "expected value" is very widely used for this.
- But this term is somewhat misleading, since the "expected"
value might itself be totally unexpected, or even impossible!
- E.g., if $p(0)=0.5 \& p(2)=0.5$, then $\operatorname{Ex}[V]=1$, even though $p(1)=0$ and so we know that $V \neq 1$ !
- Or, if $p(0)=0.5 \& p(1)=0.5$, then $\operatorname{Ex}[V]=0.5$ even if $V$ is an integer variable!

CompSci 102
© Michael Frank

## Linearity of Expectation Values

- Let $X_{1}, X_{2}$ be any two random variables derived from the same sample space $S$, and subject to the same underlying distribution.
- Then we have the following theorems:
$\operatorname{Ex}\left[X_{1}+X_{2}\right]=\operatorname{Ex}\left[X_{1}\right]+\operatorname{Ex}\left[X_{2}\right]$
$\mathbf{E x}\left[a X_{1}+b\right]=a \mathbf{E x}\left[X_{1}\right]+b$
- You should be able to easily prove these for yourself at home.


## Variance \& Standard Deviation

- The variance $\operatorname{Var}[X]=\sigma^{2}(X)$ of a random variable $X$ is the expected value of the square of the difference between the value of $X$ and its expectation value $\operatorname{Ex}[X]$ :

$$
\operatorname{Var}[X]: \equiv \sum_{s \in S}\left(X(s)-\mathbf{E x}_{p}[X]\right)^{\prime} p(s)
$$

- The standard deviation or root-mean-square (RMS) difference of $X$ is $\sigma(X): \equiv \operatorname{Var}[X]^{1 / 2}$.

Visualizing Entropy


## Entropy

- The entropy $H$ of a probability distribution $p$ over a sample space $S$ over outcomes is a measure of our degree of uncertainty about the actual outcome.
- It measures the expected amount of increase in our known information that would result from learning the outcome

$$
H(p): \equiv \mathbf{E x}_{p}\left[\log p^{-1}\right]=-\sum_{s \in S} p(s) \log p(s)
$$

- The base of the logarithm gives the corresponding unit of entropy; base $2 \rightarrow 1$ bit, base $e \rightarrow 1$ nat (as before)
- 1 nat is also known as "Boltzmann's constant" $k_{\mathrm{B}}$ \& as the "ideal gas constant" $R$, and was first discovered physically

