Touay S	topics			ion Values om variable <i>V</i> having a nume	eric domain its		
ReadingUpcomi	eted value g: Sections 5.3		• The term "expectation v value or (arity probability di $\hat{V} := \mathbf{Ex}[$ • The term "ex - But this term value might • E.g., if $p(0)$ we know t	<u>value</u> or <u>expected value</u> or <u>we</u> <u>hmetic) mean value</u> $\mathbf{Ex}[V]$, u istribution $\Pr[v] = p(v)$, is de $[V] := \mathbf{Ex}_p[V] := \sum_{v \in \mathbf{dom}[V]} 1$ pected value" is very widely n is somewhat misleading, since to itself be totally unexpected, or ev $[V] = 0.5 \& p(2) = 0.5$, then $\operatorname{Ex}[V] = 1$, even to	$\frac{p_{ighted average}}{p_{inder the}}$ fined as $p \cdot p(v)$. used for this. he "expected" ven impossible! hough $p(1)=0$ and so		
CompSci 102	© Michael Frank	14.1	CompSci 102	© Michael Frank	14.2		
Derived	Random Variables		Linearity	of Expectation Value	S		
 variable Then, an consider value <i>f(V</i>) If the ran 	a sample space over values of V (representing possible outco y function f over S can also be ed to be a random variable (wi) is derived from the actual va- nge $R = range[f]$ of f is numeri- lue $\mathbf{Ex}[f]$ of f can still be defin	omes). e hose actual alue of <i>V</i>). ic, then the	derived f subject to • Then we $Ex[X_1+X]$ $Ex[aX_1 + V]$ • You show	 Let X₁, X₂ be any two random variables derived from the <i>same</i> sample space S, and subject to the same underlying distribution. Then we have the following theorems: Ex[X₁+X₂] = Ex[X₁] + Ex[X₂] Ex[aX₁ + b] = aEx[X₁] + b You should be able to easily prove these for yourself at home. 			
	$\hat{f} = \mathbf{E}\mathbf{x}[f] = \sum_{s \in S} p(s) \cdot f(s)$			sen at nonne.			

Variance & Standard Deviation

The variance Var[X] = σ²(X) of a random variable X is the expected value of the square of the difference between the value of X and its expectation value Ex[X]:

 $\mathbf{Var}[X] := \sum_{s \in S} \left(X(s) - \mathbf{Ex}_p[X] \right) p(s)$

• The standard deviation or root-mean-square (RMS) difference of X is $\sigma(X) := \operatorname{Var}[X]^{1/2}$.

Entropy

- The *entropy H* of a probability distribution *p* over a sample space *S* over outcomes is a measure of our *degree of uncertainty* about the actual outcome.
 - It measures the expected amount of increase in our known information that would result from learning the outcome.

$$H(p) := \mathbf{E}\mathbf{x}_p[\log p^{-1}] = -\sum_{s \in S} p(s)\log p(s)$$

- The base of the logarithm gives the corresponding unit of entropy; base $2 \rightarrow 1$ bit, base $e \rightarrow 1$ nat (as before)
 - 1 nat is also known as "Boltzmann's constant" $k_{\rm B}$ & as the "ideal gas constant" R, and was first discovered physically

CompSci 102	© Michael Frank	14.5	CompSci 102	© Michael Frank	14.6

Visualizing Entropy

