Today's topics

- Recurrence relations
- Stating recurrences
- LiHoReCoCo
- Reading: Sections 6.1-6.2
- Upcoming
- Graphs

Recurrence Relation Example

- Consider the recurrence relation

$$
a_{n}=2 a_{n-1}-a_{n-2}(n \geq 2)
$$

- Which of the following are solutions?

$$
\begin{aligned}
& a_{n}=3 n \\
& a_{n}=2^{n} \\
& a_{n}=5
\end{aligned}
$$

§6.1: Recurrence Relations

- A recurrence relation (R.R., or just recurrence) for a sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more previous elements
a_{0}, \ldots, a_{n-1} of the sequence, for all $n \geq n_{0}$.
- I.e., just a recursive definition, without the base cases.
- A particular sequence (described non-recursively) is said to solve the given recurrence relation if it is consistent with the definition of the recurrence.
- A given recurrence relation may have many solutions.

Example Applications

- Recurrence relation for growth of a bank account with $P \%$ interest per given period:

$$
M_{n}=M_{n-1}+(P / 100) M_{n-1}
$$

- Growth of a population in which each organism yields 1 new one every period starting 2 time periods after its birth.

$$
P_{n}=P_{n-1}+P_{n-2} \quad \text { (Fibonacci relation) }
$$

Solving Compound Interest RR

- $M_{n}=M_{n-1}+(P / 100) M_{n-1}$

$$
=(1+P / 100) M_{n-1}
$$

$$
=r M_{n-1} \quad(\text { let } r=1+P / 100)
$$

$$
=r\left(r M_{n-2}\right)
$$

$$
=r \cdot r \cdot\left(r M_{n-3}\right) \quad \ldots \text { and so on to } \ldots
$$

$$
=r^{n} M_{0}
$$

Hanoi Recurrence Relation

- Let $H_{n}=$ \# moves for a stack of n disks.
- Here is the optimal strategy:
- Move top $n-1$ disks to spare peg. (H_{n-1} moves)
- Move bottom disk. (1 move)
- Move top $n-1$ to bottom disk. (H_{n-1} moves)
- Note that: $H_{n}=2 H_{n-1}+1$
- The \# of moves is described by a Rec. Rel.

Tower of Hanoi Example

- Problem: Get all disks from peg 1 to peg 2.
- Rules: (a) Only move 1 disk at a time.
- (b) Never set a larger disk on a smaller one.

Solving Tower of Hanoi RR

$$
\begin{aligned}
H_{n} & =2 H_{n-1}+1 \\
& =2\left(2 H_{n-2}+1\right)+1 \quad=2^{2} H_{n-2}+2+1 \\
& =2^{2}\left(2 H_{n-3}+1\right)+2+1 \quad=2^{3} H_{n-3}+2^{2}+2+1 \\
& \ldots \\
& =2^{n-1} H_{1}+2^{n-2}+\ldots+2+1 \\
& =2^{n-1}+2^{n-2}+\ldots+2+1 \\
& \left.=\sum_{i=0}^{n-1} 2^{i} \quad \quad \text { (since } H_{1}=1\right) \\
& =2^{n}-1
\end{aligned}
$$

Another R.R. Example

- Find a R.R. \& initial conditions for the number of bit strings of length n without two consecutive 0s.
- We can solve this by breaking down the strings to be counted into cases that end in 0 and in 1.

For each ending in 0 , the previous bit must be 1 , and before that comes any qualifying string of length $n-2$.

- For each string ending in 1 , it starts with a qualifying string of length $n-1$.
- Thus, $a_{n}=a_{n-1}+a_{n-2}$. (Fibonacci recurrence.)
- The initial conditions are: $a_{0}=1(\varepsilon), a_{1}=2(0$ and 1$)$.

$(n-2$ bits)	1	0

© Michael Frank

§6.2: Solving Recurrences

> General Solution Schemas

- A linear homogeneous recurrence of degree \underline{k} with constant coefficients
(" k - $\mathrm{LiHoReCoCo")} \mathrm{is} \mathrm{a} \mathrm{rec}. \mathrm{rel}$.

$$
a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}
$$

where the c_{i} are all real, and $c_{k} \neq 0$.

- The solution is uniquely determined if k initial conditions $a_{0} \ldots a_{k-1}$ are provided.

Yet another R.R. example...

- Give a recurrence (and base cases) for the number of n-digit decimal strings containing an even number of 0 digits.
- Can break down into the following cases:
- Any valid string of length $n-1$ digits, with any digit 1-9 appended.
- Any invalid string of length $n-1$ digits, + a 0 .
- $a_{n}=9 a_{n-1}+\left(10^{n-1}-a_{n-1}\right)=8 a_{n-1}+10^{n-1}$.
- Base cases: $a_{0}=1(\varepsilon), a_{1}=9(1-9)$.

CompSci 102

Solving LiHoReCoCos

- Basic idea: Look for solutions of the form $a_{n}=r^{n}$, where r is a constant.
- This requires solving the characteristic equation:

$$
\begin{aligned}
& r^{n}=c_{1} r^{n-1}+\ldots+c_{k} r^{n-k}, \text { i.e. }, \\
& r^{k}-c_{1} r^{k-1}-\ldots-c_{k}=0
\end{aligned}
$$

(rearrange

- The solutions r to this equation are called the ${ }^{\&} \times$ by $\left.r^{k-n}\right)$ characteristic roots of the LiHoReCoCo.
- They can yield an explicit formula for the sequence.

Solving 2-LiHoReCoCos

- Consider an arbitrary 2-LiHoReCoCo:

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- It has the characteristic equation (C.E.):

$$
r^{2}-c_{1} r-c_{2}=0
$$

- Theorem 1: If the CE has 2 roots $r_{1} \neq r_{2}$, then the solutions to the $R R$ are given by:

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \text { for } n \geq 0
$$

for any and all constants α_{1}, α_{2}.
Special case: $a_{n}=r_{1}{ }^{n}$ and $a_{n}=r_{2}{ }^{n}$ are, of course, solutions.
CompSci 102

Example Continued...

- To find α_{1} and α_{2}, just solve the equations for the initial conditions a_{0} and a_{1} :

$$
\begin{aligned}
& a_{0}=2=\alpha_{1} 2^{0}+\alpha_{2}(-1)^{0} \\
& a_{1}=7=\alpha_{1} 2^{1}+\alpha_{2}(-1)^{1}
\end{aligned}
$$

Simplifying, we have the pair of equations:

$$
\begin{aligned}
& 2=\alpha_{1}+\alpha_{2} \\
& 7=2 \alpha_{1}-\alpha_{2}
\end{aligned}
$$

which we can solve easily by substitution:

$$
\begin{aligned}
& \alpha_{2}=2-\alpha_{1} ; \quad 7=2 \alpha_{1}-\left(2-\alpha_{1}\right)=3 \alpha_{1}-2 \\
& 9=3 \alpha_{1} ; \quad \alpha_{1}=3 ; \quad \alpha_{2}=-1
\end{aligned}
$$

- Using α_{1} and α_{2}, our final answer is: $a_{n}=3 \cdot 2^{n}-(-1)^{n}$

Check: $\left\{a_{n \geq 0}\right\}=2,7,11,25,47,97$
Consci 102
...

Example

- Solve the recurrence $a_{n}=a_{n-1}+2 a_{n-2}$ given the initial conditions $a_{0}=2, a_{1}=7$.
- Solution: Use theorem 1 :
- We have $c_{1}=1, c_{2}=2$
- The characteristic equation is: $r^{2}-r-2=0$
- Solve it:

$$
r=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}=\frac{1 \pm \sqrt{9}}{2}=\frac{1 \pm 3}{2}=2 \text { or }-1 \text {. }
$$

- so, $r=2$ or $r=-1$.
- So, $a_{n}=\alpha_{1} 2^{n}+\alpha_{2}(-1)^{n}$.

(Using the quadratic formula here.)	$a x^{2}+b x+c=0 \Leftrightarrow$ $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

CompSci 102

Proof of Theorem 1

- Proof that $a_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}$ is always a solution:
- We know $r_{1}^{2}=c_{1} r_{1}+c_{2}$ and $r_{2}^{2}=c_{1} r_{2}+c_{2}$.
- Now we can show the proposed sequence satisfies the recurrence $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$:
$c_{1} a_{n-1}+c_{2} a_{n-2}=c_{1}\left(\alpha_{1} r_{1}{ }^{n-1}+\alpha_{2} r_{2}{ }^{n-1}\right)+c_{2}\left(\alpha_{1} r_{1}{ }^{n-2}+\alpha_{2} r_{2}{ }^{n-2}\right)$
$=\alpha_{1} r_{1}^{n-2}\left(c_{1} r_{1}+c_{2}\right)+\alpha_{2} r_{2}^{n-2}\left(c_{1} r_{2}+c_{2}\right)$
$=\alpha_{1} r_{1}^{n-2} r_{1}^{2}+\alpha_{2} r_{2}^{n-2} r_{2}^{2}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}=a_{n} . \square$
- Can complete the proof by showing that for any initial conditions, we can find corresponding α 's.
- But it turns out this goes through only if $r_{1} \neq r_{2}$.

The Case of Degenerate Roots

- Now, what if the C.E. $r^{2}-c_{1} r-c_{2}=0$ has only 1 root r_{0} ?
- Theorem 2: Then,
$a_{n}=\alpha_{1} r_{0}^{n}+\alpha_{2} n r_{0}^{n}$, for all $n \geq 0$,
for some constants α_{1}, α_{2}.

k-LiHoReCoCos

- Consider a k-LiHoReCoCo:
- It's C.E. is:

$$
r^{k}-\sum_{i=1}^{k} c_{i} r^{k-i}=0
$$

$$
a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i}
$$

- Theorem 3: If this has k distinct roots r_{i}, then the solutions to the recurrence are of the form:

$$
a_{n}=\sum_{i=1}^{k} \alpha_{i} r_{i}^{n}
$$

for all $n \geq 0$, where the α_{i} are constants.

Degenerate Root Example

- Solve $a_{n}=6 a_{n-1}-9 a_{n-2}$ with $a_{0}=1, a_{1}=6$.
- The C.E. is: $r^{2}-6 r+9=0$.
- Note that $b^{2}-4 a c=(-6)^{2}-4 \cdot 1 \cdot 9=36-36=0$.
- Therefore, there is only one root, namely $-b / 2 a=-(-6) / 2=3$.

Degenerate \boldsymbol{k}-LiHoReCoCos

- Suppose there are t roots r_{1}, \ldots, r_{t} with multiplicities m_{1}, \ldots, m_{t}. Then:

$$
a_{n}=\sum_{i=1}^{t}\left(\sum_{j=0}^{m_{i}-1} \alpha_{i, j} n^{j}\right) r_{i}^{n}
$$

for all $n \geq 0$, where all the α are constants.

LiNoReCoCos

- Linear nonhomogeneous RRs with constant coefficients may (unlike LiHoReCoCos) contain some terms $F(n)$ that depend only on n (and not on any a_{i} 's). General form:

$$
\underbrace{a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}}+F(n)
$$

The associated homogeneous recurrence relation (associated LiHoReCoCo).

LiNoReCoCo Example

- Find all solutions to $a_{n}=3 a_{n-1}+2 n$. Which solution has $a_{1}=3$?
- Notice this is a 1 -LiNoReCoCo. Its associated 1-LiHoReCoCo is $a_{n}=3 a_{n-1}$, whose solutions are all of the form $a_{n}=\alpha 3^{n}$. Thus the solutions to the original problem are all of the form $a_{n}=p(n)+\alpha 3^{n}$. So, all we need to do is find one $p(n)$ that works.

Solutions of LiNoReCoCos

- A useful theorem about LiNoReCoCos:
- If $a_{n}=p(n)$ is any particular solution to the LiNoReCoCo:

$$
a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)+F(n)
$$

- Then all of its solutions are of the torm:

$$
a_{n}=p(n)+h(n),
$$

where $a_{n}=h(n)$ is any solution to the associated homogeneous RR $a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)$

CompSci 102
© Michael Frank

Trial Solutions

- If the extra terms $F(n)$ are a degree- t polynomial in n, you should try a general degree- t polynomial as the particular solution $p(n)$.
- This case: $F(n)$ is linear so try $a_{n}=c n+d$.

$$
c n+d=3(c(n-1)+d)+2 n \quad(\text { for all } n)
$$

$(2 c+2) n+(2 d-3 c)=0 \quad$ (collect terms)
So $c=-1$ and $d=-3 / 2$.
So $a_{n}=-n-3 / 2$ is a solution.

- Check: $a_{n \geq 1}=\{-5 / 2,-7 / 2,-9 / 2, \ldots\}$

Finding a Desired Solution

- From the previous, we know that all general solutions to our example are of the form:

$$
a_{n}=-n-3 / 2+\alpha 3^{n} .
$$

Solve this for α for the given case, $a_{1}=3$:

$$
\begin{aligned}
& 3=-1-3 / 2+\alpha 3^{1} \\
& \alpha=11 / 6
\end{aligned}
$$

- The answer is $a_{n}=-n-3 / 2+(11 / 6) 3^{n}$.

Double Check Your Answer!

- Check the base case, $a_{1}=3$:

$$
\begin{aligned}
a_{n} & =-n-3 / 2+(11 / 6) 3^{n} \\
a_{1} & =-1-3 / 2+(11 / 6) 3^{1} \\
& =-2 / 2-3 / 2+11 / 2=-5 / 2+11 / 2=6 / 2=3
\end{aligned}
$$

- Check the recurrence, $a_{n}=3 a_{n-1}+2 n$:

$$
\begin{aligned}
& -n-3 / 2+(11 / 6) 3^{n}=3\left[-(-n-1)-3 / 2+(11 / 6) 3^{n-1}\right]+2 n \\
& \quad=3\left[-n-1 / 2+(11 / 6) 3^{3-1}\right]+2 n \\
& \quad=-3 n-3 / 2+(11 / 6) 3^{n}+2 n=-n-3 / 2+(11 / 6) 3^{n}
\end{aligned}
$$

