Decision Theory
CPS 170
Ronald Parr

Utility Functions

- A utility function is a mapping from world states to real numbers
- Sometimes called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$
\begin{gathered}
\max _{a} \sum_{s} P(s \mid a) U(s) \\
\mathrm{a}=\text { actions }, \mathrm{s}=\text { states }
\end{gathered}
$$

Axioms of Utility Theory

- Orderability: $(A \succ B) \vee(A \prec B) \vee(A \sim B)$
- Transitivity: $(A>B) \wedge(B>C) \Rightarrow(A>C)$
- Continuity: $A>B \succ C \Rightarrow \exists p[p, A, 1-p, C] \sim B$
- Substitutability: $A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
- Monotonicity: $A \succ B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B] \geq[q, A ; 1-q, B])$
- Decomposability:
$[p, A ;(1-p),[q, B ;(1-q), C]] \sim[p, A ;(1-p) q, B ;(1-p)(1-q), C]$

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in Al to model intelligence
- Asked (sort of) by any intelligent person every day

Are Utility Functions Natural?

- Some have argued that people don't really have utility functions
- What is the utility of the current state?
- What was your utility at $8: 00 \mathrm{pm}$ last night?
- Utility elicitation is difficult problem
- It's easy to communicate preferences
- Theorem (sorta): Given a plausible set of assumptions about your preferences, there must exist a consistent utility function

Consequences of Preference Axioms

- Utility Principle
- There exists a real-valued function U:

$$
\begin{aligned}
& U(A)>U(B) \Leftrightarrow A \succ B \\
& U(A)=U(B) \Leftrightarrow A \sim B
\end{aligned}
$$

- Expected Utility Principle
- The utility of a lottery can be calculated as:

$$
U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=\sum_{i} p_{i} U\left(S_{i}\right)
$$

More Consequences

- Scale invariance
- Shift invariance

Maximizing Utility

- Suppose you want to be famous
- You can be either (N,M,C)
- Nobody
- Modestly Famous
- Celebrity
- Your utility function:
- $\mathrm{U}(\mathrm{N})=20$
- $U(M)=50$
- $U(C)=100$
- You have to decide between going to grad school and becoming a professor (G) or going to Hollywood and becoming an actor (A)

Outcome Probabilities

- $\mathrm{P}(\mathrm{N} \mid \mathrm{G})=0.5, \mathrm{P}(\mathrm{M} \mid \mathrm{G})=0.4, \mathrm{P}(\mathrm{C} \mid \mathrm{G})=0.1$
- $\mathrm{P}(\mathrm{N} \mid \mathrm{H})=0.6, \mathrm{P}(\mathrm{M} \mid \mathrm{H})=0.2, \mathrm{P}(\mathrm{C} \mid \mathrm{H})=0.2$
- Maximize expected utility:
- $U(N)=20, U(M)=50, U(C)=100$
$E U_{G}=0.5(20)+0.4(50)+0.1(100)=40$
$E U_{H}=0.6(20)+0.2(50)+0.2(100)=42$
Hollywood wins!

Utility of Money

- How much happier are you with an extra $\$ 1 \mathrm{M}$?
- How much happier is Bill Gates with an extra $\$ 1 \mathrm{M}$?
- Some have proposed:

A Sigmoidal Utility Function

$$
U(\$ X)=100 \frac{1}{1+2^{-0.00001 X}}
$$

Utility \& Gambling

- Suppose $\mathrm{U}(\$ \mathrm{X})=\mathrm{X}$, would you spend $\$ 1$ for a 1 in a million chance of winning $\$ 1 \mathrm{M}$?
- Suppose you start with c dollars:
- $\mathrm{EU}(\mathrm{gamble})=1 / 1000000(1000000-1+\mathrm{c})+(1-1 / 1000000)(\mathrm{c}-1)=\mathrm{c}$
- $E U\left(d o _n o t h i n g\right)=c$
- Starting amount doesn't matter
- You have no expected benefit from gambling

Sigmoidal Utility \& Gambling

- Suppose: $U(\$ X)=100 \frac{1}{1+2^{-0.00001 \mathrm{X}}}$
- Suppose you start with \$1M
- EU(gamble)-EU(do_nothing)=-5.7*10 ${ }^{-7}$
- Winning is worthless
- Suppose you start with -\$1M
- EU(gamble)-EU(do_nothing)=+4.9*10-5
- Gambling is rational because losing doesn't hurt

Additive Independence

- Suppose it makes me happy to have my car clean
- Suppose it makes me happy to have coffee
- U=U(coffee)+U(clean)
- It seems that these don't interact
- However, suppose there's a tea variable
- $\mathrm{U}=\mathrm{U}($ coffee $)+\mathrm{U}($ tea $)+\mathrm{U}($ clean $) ? ?$?
- Probably not. I'd need U(coffee,tea)+U(clean)
- Often implicit!

Value of Information

- Expected utility of action a with evidence E:

$$
\mathrm{EU}_{\mathrm{E}}(A \mid E)=\max _{a} \sum_{i} P\left(S_{i} \mid E, a\right) U\left(S_{i}\right)
$$

- Expected utility given new evidence E '

$$
\mathrm{EU}_{E, E^{\prime}}\left(A \mid E, E^{\prime}\right)=\max _{a} \sum_{i} P\left(S_{i} \mid E, E^{\prime}, a\right) U\left(S_{i}\right)
$$

- Value of knowing E' (value of perfect information)

$\operatorname{VPI}_{E}\left(E^{\prime}\right)=$	$\left(\sum_{E^{\prime}} P\left(E^{\prime} \mid E\right) \mathrm{EU}_{E, E^{\prime}}\left(a \mid E, E^{\prime}\right)\right)-\mathrm{EU}\left(a_{E} \mid E\right)$
	Expected utility given

More Properties of VOI

Properties of VPI

- VPI is non-negative!
- VPI is not additive
- VPI is order independent
- VPI is easy to compute and is often used to determine how much you should pay for one extra piece of information. Why is this myopic?

For example, knowing X AND Y together may useful, while knowing just one alone may be useless.

DT as Search

- Attach costs to arcs, leaves
- Path(s) w/lowest expected cost = optimal
- Minimizing expect cost = maximizing expected utility
- Expectimax:

$$
\begin{aligned}
& \mathrm{V}\left(n_{\max }\right)=\max _{s \in \operatorname{succesors}(n)} \mathrm{V}(s) \\
& \mathrm{V}\left(n_{\text {chance }}\right)=\sum_{s \in \operatorname{succesors}(n)} \mathrm{V}(s) p(s)
\end{aligned}
$$

Optimal Solutions and Computation Cost

(10) Optimal solutions to decision theoretic problems are necessarily paths
(1)Why?
(1)What does this say about cost of decision theoretic reasoning?

Conclusions

- Decision theory provides a framework for optimal decision making
- Principle: Maximize Expected Utility
- Easy to describe in principle
- Application to complex problems can require advanced planning and probabilistic reasoning techniques

