

Decision Trees

- Decision trees try to construct small, consistent hypothesis
- · Suppose our concept is "blue cube"

Facts About Decision Trees

- If the concept has d conjuncts, there will be a decision tree for this concept with depth d
- Decision trees are very bad for some functions:
 Parity function
 - Majority function
- For errorless data, you can always construct a decision tree that correctly labels every element of the training set, but the number of nodes may be exponential in the number of variables.

Decision Tree Algorithms

- Aim for:
 - Small decision trees
 - Robustness to misclassification
- Constructing the shortest decision tree is intractable
- Standard approaches are greedy
- Classical approach is to split tree using an information-theoretic criterion

Growing Decision Trees

Initialize: one root node with all training instances Repeat until no good leaves

Pick leaf

Split = choose_variable(variabes - all_parents(leaf)) For val in domain(split)

new_leaf = new_leaf(split=val)

new_leaf.instances=leaf.instances s.t. split=val

For leaf in tree

classification(leaf)=majority_classification(leaf)

Information Theory

- Roughly speaking, information theory measures the expected number of bits needed to communicate information from one person to another
- Suppose person1 is flipping a coin with bias p
- · Person1 wants to tell person2 the sequence of results
- What is the expected number of bits person 1 will send to person 2?
- Note relation to compression

Information Content

$$I(p_1,...,p_n) = E(\#\text{bits}) = \sum_{i=1}^n -p_i \log_2(p_i)$$
For an unbiased coin, the information content is 1.
For a totally biased coin, the information content is 0.

Favoring Small Examples

- Information gain (and other splitting criteria)
 Are greedy
 - Favor small trees
- This makes representation an issue yet again
- Suppose you want to learn "parity(+) and blue"
- Hard to learn with decision trees, but
 - If we treat parity like a state variable, then it's easy
 - Call these derived variables *features* or *attributes*

Decision Tree Conclusion

- · Simple method
- · Works surprisingly well in many cases
- Issues:
 - Continuous variables
 - Missing values
 - Expressive power