Decision Trees

CPS 170
Ron Parr

Facts About Decision Trees

- If the concept has d conjuncts, there will be a decision tree for this concept with depth d
- Decision trees are very bad for some functions:
- Parity function
- Majority function
- For errorless data, you can always construct a decision tree that correctly labels every element of the training set, but the number of nodes may be exponential in the number of variables.

Decision Trees

- Decision trees try to construct small, consistent hypothesis
- Suppose our concept is "blue cube"

Decision Tree Algorithms

- Aim for:
- Small decision trees
- Robustness to misclassification
- Constructing the shortest decision tree is intractable
- Standard approaches are greedy
- Classical approach is to split tree using an information-theoretic criterion

Growing Decision Trees

Initialize: one root node with all training instances
Repeat until no good leaves
Pick leaf
Split = choose_variable(variabes - all_parents(leaf))
For val in domain(split)
new_leaf = new_leaf(split=val)
new_leaf.instances=leaf.instances s.t. split=val
For leaf in tree
classification(leaf)=majority_classification(leaf)

Information Theory

- Roughly speaking, information theory measures the expected number of bits needed to communicate information from one person to another
- Suppose person1 is flipping a coin with bias p
- Person1 wants to tell person2 the sequence of results
- What is the expected number of bits person 1 will send to person 2 ?
- Note relation to compression

$$
\begin{gathered}
\text { Information Content } \\
I\left(p_{1}, \ldots, p_{n}\right)=E(\# \mathrm{bits})=\sum_{i=1}^{n}-p_{i} \log _{2}\left(p_{i}\right)
\end{gathered}
$$

For an unbiased coin, the information content is 1. For a totally biased coin, the information content is 0 .

Information Content of a Leaf

$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}$
Information gain of a split:

$$
I\left(\frac{p}{p+n}, \frac{n}{p+n}\right)-\sum_{i=1}^{v} \frac{p_{i}+n_{i}}{p+n} I\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)
$$

Favoring Small Examples

- Information gain (and other splitting criteria)
- Are greedy
- Favor small trees
- This makes representation an issue yet again
- Suppose you want to learn "parity(+) and blue"
- Hard to learn with decision trees, but
- If we treat parity like a state variable, then it's easy
- Call these derived variables features or attributes

Information Content

Gain Example

- Suppose we have seen:
- Red tetrahedron (f), Blue sphere (\mathbf{T}), Blue cone (T), green cone (f)
- Is it better to split on shape or color?
- Information of original set is: 1
- Information gain of splitting on cone:
- Information gain of splitting on blue:

Decision Tree Conclusion

- Simple method
- Works surprisingly well in many cases
- Issues:
- Continuous variables
- Missing values
- Expressive power

