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Decision Trees
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Decision Trees

•Decision trees try to construct small, 
consistent hypothesis

•Suppose our concept is “blue cube”
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Facts About Decision Trees

• If the concept has d conjuncts, there will be a 
decision tree for this concept with depth d

• Decision trees are very bad for some functions:
– Parity function
– Majority function

• For errorless data, you can always construct a 
decision tree that correctly labels every element 
of the training set, but the number of nodes may 
be exponential in the number of variables.

Decision Tree Algorithms

•Aim for:
–Small decision trees
–Robustness to misclassification

•Constructing the shortest decision tree is 
intractable

•Standard approaches are greedy
•Classical approach is to split tree using an 

information-theoretic criterion

Growing Decision Trees

Initialize: one root node with all training instances
Repeat until no good leaves

Pick leaf
Split = choose_variable(variabes –all_parents(leaf))
For val in domain(split)

new_leaf = new_leaf(split=val)
new_leaf.instances=leaf.instances s.t. split=val

For leaf in tree
classification(leaf)=majority_classification(leaf)

Information Theory

• Roughly speaking, information theory measures the expected 
number of bits needed to communicate information from one 
person to another

• Suppose person1 is flipping a coin with bias p

• Person1 wants to tell person2 the sequence of results

• What is the expected number of bits person 1 will send to 
person 2?

• Note relation to compression
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Information Content

∑
=

−==
n

i
iin ppEppI

1
21 )(log)bits(#),,( K

For an unbiased coin, the information content is 1.
For a totally biased coin, the information content is 0.

Information Content

Information Content of a Leaf
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Information gain of a split:
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Gain Example

•Suppose we have seen:
–Red tetrahedron (f), Blue sphere (T), Blue 

cone (T), green cone (f)

•Is it better to split on shape or color?
•Information of original set is:  1
•Information gain of splitting on cone:
•Information gain of splitting on blue:

Favoring Small Examples

• Information gain (and other splitting criteria)
– Are greedy
– Favor small trees

• This makes representation an issue yet again
• Suppose you want to learn “parity(+) and blue”
• Hard to learn with decision trees, but

– If we treat parity like a state variable, then it’s easy
– Call these derived variables features or attributes

Decision Tree Conclusion

•Simple method
•Works surprisingly well in many cases
•Issues:

–Continuous variables
–Missing values
–Expressive power


