First Order Logic
(Predicate Calculus)

CPS 170
Ronald Parr

First Order Logic

« Propositional logic is very restrictive

— Can't make global statements about
objects in the world

— Tends to have very large KBs

* First order logic is more expressive
— Relations, quantification, functions
— More expensive

First Order Syntax

Sentences

Atomic sentence predicate(term)
Terms — functions, constants, variables
Connectives

Quantifiers

Constants

Variables

Relations

 Assert relationships between objects
» Examples
— Loves(Harry, Sally)
— Between(Canada, US, Mexico)
* Semantics
— Object and predicate names are mnemonic only
— Interpretation is imposed from outside

Functions

Functions are specials cases of relations
Suppose R(X3,X,,...,X,,Y) is such that for
every value of x;,X,,...,X, there is a unique y
Then R(Xy,%,,...,X,) can be used as a
shorthand for y

— Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
Remember that the object identified by a
function depends upon the interpretation

Quantification

« For all objects in the world...
UxTired(X)

 For at least one object in the world...

[XTired(X)




Examples

» Everybody loves somebody
UxCyLoves(x, Y)
» Everybody loves everybody
UxOyLoves(Xx, y)
Everybody loves Raymond
OxLoves(x, Raymond)

Raymond loves everybody
OxLoves(Raymond, x)

What's Missing?

» There are many extensions to first order logic
Higher order logics permit quantification over
predicates:

Ox, y(x=y) = (Op(P(X) = p(Y)))
Functional expressions (lambda calculus)
« Uniqueness

Extensions typically replace a potentially long
series of conjuncts with a single expression

Inference

« All rules of inference for propositional logic
apply to first order logic

* We need extra rules to handle substitution for
guantified variables

SUBST({x/Harry, y/ Sally}, Loves X, y)) = Loveq Harry, Sally)

Inference Rules

» Universal Elimination

Ova
VUBST ({v/g},a)
* How to read this:

— We have a universally quantified variable v in a
— Can substitute any g for v and a will still be true

Inference Rules
» Existential Elimination

Lva
SUBST({v/Kk},a)

* How to read this:
— We have a universally quantified variable v in a
— Can substitute any k for v and a will still be true

— IMPORTANT: k must be a previously unused
constant (skolem constant). Why is this OK?

Inference Rules

« Existential Introduction

a
SUBST({g/V},va)

¢ How toread this:
— We know that the sentence a is true

— Can substitute variable v for any constant g in a
and (w/existential quantifier) and o will still be true
— Why is this OK?




Inference Rules

» Generalized Modus Ponens

» Define a substitution such that:
SUBST(8, p,') =SUBST(8, p,)Ti

* Then

PP P (PER LD P, =0
SUBST({6/q})

Unification

 Substitution is a non-trivial matter
» We need an algorithm unify:
Unify(p,q) =6 :Subst(8, p) =Subst(4, Q)

 Important: Unification replaces variables:

[CxLoves(John, X), CxHates(John, x)

Generalized Modus Ponens

SUBST(6, p,") =SUBST(8, p,)0li

PSR P (R LR LD P = Q)
SUBST({6/q})

» How to read this:
—We have an implication which implies q

— Any consistent substitution of variables on
the LHS must yield a valid conclusion on
the RHS

Unification Example

[OxKnows(John, x) = Loves(John, x)
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))

OxKnows(x, Elizabeth)

Note: All unquantified variables are assumed universal from here on.

Unify (Knows(John, x), Knows(John, Jane)) =
[Unify (Knows(John, x), Knows(y, Leonid)) =
Unify (Knows(John, x), Knows(y, Mother(y))) =
Unify (Knows(John, x), Knows(x, Elizabeth)) =

Most General Unifier

* Unify(Knows(John,x),Knows(y,z))
—{y/John,x/z}
—{y/John,x/z,w/Freda}
— {y/John,x/John,z/John)

* When in doubt, we should always return
the most general unifier (MGU)

— MGU makes least commitment about
binding variables to constants

Proof Procedures

» Suppose we have a knowledge base: KB
* We want to prove q
» Forward Chaining

— Like search: Keep proving new things and adding
them to the KB until we are able to prove q
» Backward Chaining
— Find p;...p, s.t. knowing p;...p,, would prove g
— Recursively try to prove p;...p,




Forward Chaining Example

[OxKnows(John, x) = Loves(John, )
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))
OxKnows(x, Elizabeth)

Forward Chaining

Procedure Forward_Chain(KB,p)

If pisin KB then return

Add p to KB

For each (p; * ... * p,=>q) in KB such that for

some i,

Unify(p;,p)=6 succeeds do
Find_And_lInfer(KB,[p,,...,P.1:Pis1s-+-Pnl:d.0)

end

Procedure Find_and_Infer(KB,premises,conclusion,8)

If premises=[] then
Forward_Chain(KB,Subst(8,conclusion))

Else for each p’ in KB such that

Unify(p’,Subst(6,Head(premises)))=6, do
Find_And_lInfer(KB,Tail(premises),conclusion,[6,8,]))

end

Backward Chaining Example

[OxKnows(John, x) = Loves(John, x)
Knows(John, Jane)

OyKnows(y, Leonid)

OyKnows(y, Mother (y))
OxKnows(x, Elizabeth)

Backward Chaining

Function Back_Chain(KB,q)
Back_Chain_List(KB,[q].{})

Function Back_Chain_List(KB,glist,8)
If glist=[] then return &
g<-head(glist)
For each g;’ in KB such that 6,<-Unify(q,q;") succeeds do
Answers <- Answers + [6,6]
For each (p*..."p,=>q;)in KB: 6<-Unify(q,q;’) succeeds do
Answers<- Answers+
Back_Chain_List(KB,Subst(q;[p;...p.]).[6,6]))
return union of Back_Chain_List(KB,Tail(glist),6) for each 8 in answers

Completeness

OxP(X) = Q(x)
Ox=P(X) = R(X)
OxQ(X) = S(x)
OXR(X) = S(X)
S(A)?7?

* Problem: Generalized Modus Ponens not complete

» Goal: A sound and complete inference procedure for
first order logic

Generalized Resolution

(p, O...p;-..0py),(q O...q...0q,)
SUBST(,(p, O... p;, O pjy---O0p,0q, O...0, OG,,-.-04,))

» How to read this:
— Substitution: Unify(p;,~q,) =6
— If the same term appears in both positive
and negative form in two disjunctions, they
cancel out when disjunctions are combined




Resolution Properties

» Proof by refutation (asserting negation and
resolving to nil) is sound and complete

Resolution is not complete in a generative
sense, only in a testing sense

This is only part of the job

¢ To use resolution, we must convert
everything to a canonical form

Canonical Form

* Eliminate Implications

» Move negation inwards

» Standardize (apart) variables

* Move quantifiers Left

» Skolemize

 Drop universal quantifiers

« Distribute AND over OR

 Flatten nested conjunctions and disjunctions
» Convert disjunctions to implications (optional)

Resolution Example

(=P LQ(X)
(PO UR(X))
(= QM) US(x))
(=R) I S(x))
S(A)?7?

Example on board...

Computational Properties

Can we enumerate the set of all proofs?
Can we check if a proof is valid?
What if no valid proof exists?

Inference in first order logic is semi-
decidable

Compare with halting problem

Godel

How do these soundness and
completeness results relate to Godel's
incompleteness theorem?
Incompleteness applies to mathematical
systems

You need numbers because you need a
way of referring to proofs by number




