Games

CPS 170
Ron Parr

Why Study Games?

» Many human activities can be modeled as
games
— Negotiations
— Bidding
—TCP/IP
— Military confrontations
— Pursuit/Evasion

* Games are used to train the mind

— Human game-playing, animal play-fighting

Why Are Games Good for Al?

Games typically have concise rules
Well-defined starting and end points
Sensing and effecting are simplified

— Not true for sports games

— See robocup

Games are fun!

Downside: Getting taken seriously (not)
— See robo search and rescue

History of Games in Al

» Computer games have been around almost as
long as computers (perhaps longer)
— Chess: Turing (and others) in the 1950s
— Checkers: Samuel, 1950s learning program

* Usually start with naive optimism

* Follow with naive pessimism

« Simon: Computer chess champ by 1967

* Many, e.g., Kasparov, predicted that a computer
would never be champion

Games Today

» Computers perform at champion level
— Backgammon, Checkers, Chess, Othello
» Computers perform well
— Bridge
» Computers still do badly
—Go, Hex

Game Setup

Most commonly, we study games that are:

— 2 player

— Alternating

— Zero-sum

— Perfect information

Examples: Checkers, chess, backgammon
Assumptions can be relaxed at some expense
Economics studies case where number of
agents is very large

— Individual actions don’t change the dynamics

Zero Sum Games

Assign values to different outcomes

Win=1, Loss =-1

With zero sum games every gain comes at the
other player’'s expense

Sum of both player’'s scores must be 0

* Are any games truly zero sum?

Characterizing Games

» Two-player games - very much like search
— Initial state
— Successor function
— Terminal test
— Objective function (heuristic function)
* Unlike search
— Terminal states are often a large set
— Full search to terminal states usually impossible

Game Trees

Max nodes

Al A3

Min nodes v

Terminal Nodes

Game Trees
x[o[x
[5) X Player 1
0
XOX'/XOX\‘XOX
O XX o [x o [x] Player2
o X 0 X 0
x[o[x x[o[x] [xTo[x] [xTo[x] [xJo[x] [xJo[x
o[x]x o[x|x]| [ofo[x]| [o] [x]| [ofo[x] [o] [x
o o ofo] [x] Tol| [x[oJo| [x]| ol [x[o]o
Player 1
Minimax

» Max player tries to maximize his return
* Min player tries to minimize his return
« This is optimal for both (zero sum)

minimax (N,) = MaX gy, cesors(ny MiNIMax(s)

minimax (N,) = MiN g (n) MiNIMax(s)

'min

Minimax Values

%
Min nodes X

A A A

Minimax Properties

« Minimax can be run depth first
—Time O(b™)
— Space O(bm)

Assumes that opponent plays optimally

» Based on a worst-case analysis

What if this is incorrect?

Evaluation Functions

Like heuristic functions

Try to estimate value of a node without
expanding all the way to termination
Using evaluation functions

— Do a depth-limited search

— Treat evaluation function as if it were terminal
What's wrong with this?

Minimax in the Real World

Search trees are too big

Alternating turns double depth of the search
—2ply =1 full turn

Branching factors are too high

—Chess: 35

—-Go: 361

Search from start never terminates in non-
trivial games

Desiderata for Evaluation Functions

* Would like to put the same ordering on nodes
(even if values aren't totally right)

* Is this a reasonable thing to ask for?

* What if you have a perfect evaluation function?

» How are evaluation functions made in practice?
— Buckets

— Linear combinations
« Chess pieces (material)
« Board control (positional, strategic)

Search Control Issues

Horizon effects

— Sometimes something interesting is just
beyond the horizon

— How do you know?
* When to generate more nodes?

« If you selectively extend your frontier, how
do you decide where?

« If you have a fixed amount of total game
time, how do you allocate this?

Pruning

The most important search control method is
figuring out which nodes you don’'t need to
expand

Use the fact that we are doing a worst-case

analysis to our advantage

— Max player cuts off search when he knows min
player can force a provably bad outcome

— Min player cuts of search when he knows max can
force a provably good (for max) outcome

Alpha-beta pruning

Max nodes

w

Min nodes 2 v
3 2

How to prune

We still do (bounded) DFS

Expand at least one path to the “bottom”

If current node is max node, and min can
force a lower value, then prune siblings

If current node is min node, and max can
force a higher value, then prune siblings

Max node pruning

‘/
Max nodes A
2 4

Implementing alpha-beta

max_value(state, alpha, beta)

if cutoff(state) then return eval(state)

for each s in successors(state) do
alpha = max(alpha, min_value(s, alpha, beta))
if alpha >= beta the return beta

end

return alpha

min_value(state, alpha, beta)

if cutoff(state) then return eval(state)

for each s in successors(state) do
beta = min(beta, max_value(s, alpha, beta))
if beta <= alpha the return alpha

end

return beta

Amazing facts about alpha-beta

» Empirically, alpha-beta has the effect of
reducing the branching factor by half for
many problems

« Effectively doubles horizon

* Alpha-beta makes the difference between
novice and expert computer players

What About Probabilities?

Max nodes
\ ~

Chance
nodes
P=0.9
P=0.5 P=0.5 P=0.6/ \p=0.4 P=0.1

vy Vvvy vy

Min nodes

Expectiminimax Expectiminimax is nasty

 High branching factor
* nrandom outcomes per chance node » Randomness makes evaluation fns difficult
* O(b™n™) time — Hard to predict many steps into future
— Values tend to smear together
— Preserving order is not sufficient
* Pruning chances nodes is problematic

cminmax (nmax) — max ssuccesors(n) STIIIMAX (S) — Prune based upon bound on an expectation

eminimax (N,) = MiN o (n) €MINIMAXx (S) — Need a priori bounds on the evaluation function
eminimax (N,,..) = Cruccesons(n) eminimax (S) p(S)
Multiplayer Games Conclusions
 Things sort-of generalize » Game tree search is a special kind of search
» We can maintain a vector of possible » Rely heavily on heuristic evaluation functions

values for each player at each node
Assume that each player acts greedily
What's wrong with this?

* Alpha-beta is a big win
» Most successful players use alpha-beta
* Final thoughts:
— Search effort vs. evaluation function effort
—When to invest in your evaluation function?

