CPS 170 Introduction

Ron Parr

Contact Information

- Professor
 - Ron Parr
 - D209 LSRC, parr@cs.duke.edu, 660-6537
 - Office hours: Tuesday 1-2, Wednesday 2-3
- TA
 - Zheng Li
 - D125 LSRC, zheng@cs.duke.edu, 660-6576
 - Office hours: Tuesday 2-3, Wednesday 3-4

About Me

- My sixth year at Duke
- Bachelor's degree in philosophy (Princeton) - Philosophy of mind
- Ph.D. in computer science (Berkeley) - Hierarchical planning under uncertainty
- · Current interests:
 - Planning under uncertainty
 - Probabilistic reasoning
 - Game theory
 - Reinforcement learning
 - Robotics
 - Sensing & Vision

Requirements

- · Good programming skills:
 - C
 - Other languages OK, but will require extra work from you b/c you won't be able to use our code
- Prequesites
- Short proofs
 - Basic probability concepts
 - Basic algorithmic concepts
 - Complexity O()
 - · Analysis of algorithms
 - Math · Partial derivatives

Major Topics Covered

- Search
- A*, Games, SAT, CSPs
- Logic and Knowledge Representation
 - Propositional Logic
 - First Order Logic
- Planning
 - Classical, stochastic
- · Reasoning under uncertainty
- Bayes nets, decision theory, HMMs, tracking · Introduction to robotics
- Learning
 - Decision trees, Neural nets, Reinforcement learning

Major Topics Not Covered

- Natural Language
- Vision

Class Mechanics

- Textbook: Artificial Intelligence, A Modern Approach, Russell & Norvig (second edition)
- Homeworks: 25%
 Discussion OK, write-up must be your own
- Projects: 25%
- Discussion OK, coding, write-up must be your ownMidterm: 25%
- Closed book, in class, no collaboration
- Final: 25%
 - Closed book, finals week, no collaboration

Why Study Al?

- · Important innovations have grown out of AI
 - Linked list manipulation (Lisp)
 - Timesharing
 - X
 - Formalization of search techniques
 - Heuristics for intractable (NP hard) problems
 - Pattern recognition methods
- Cool tools
- · Cool applications

Cool Al Applications Al is lurking in more places than you think: PDAs This Program E-commerce Voice/anguage recognition Voice jail My car Deap Blue Mobile robotics Space exploration Logistics planning

So, what is this AI stuff?

- Make machines *think* like humans – Is this enough?
 - Is this too much?
- Make machines act like humans
- Make machines act like humans – Is this sufficient?
 - Is this desirable?

Turing Test

- Computer must be indistinguishable from a human based upon written exchanges
 - Does this imply intelligence?
 - How could the computer cheat?
 - Does intelligence imply a certain type of computation?
 - Could an intelligent machine still fail the test?
- Does our notion of intelligence transcend our concept of humanity?

Ideal Intelligence

- Intelligence means making optimal choices
- Is anything truly intelligent?
- How do we define optimality?
- Is there a more modest goal?

Ron's Compromise Definition

Artificial Intelligence is the task of developing general purpose algorithms with which machines can accomplish tasks which, if performed by a human, would be considered indicative of intelligence.

The Moving Target

- · What is human intelligence?
 - At one time, calculating ability was prized · Now it is deprecated
 - · Calculators permitted earlier and earlier in school
 - Chess was once viewed as an intelligent task · Now, massively parallel computers use not very intelligent search procedures to beat grand masters · Some say Deep Blue wasn't Al
 - Learning once thought uniquely human
 - · Now it's a well-developed theory
 - · Best backgammon player is a learning program

Artificial Flight

· Even seemingly unambiguous terms such as "flight" were subject to biological chauvinism.

· Demonstrable, unambiguous success ended chauvinism

Intelligence: A web of abilities

- · Intelligence is hard to define in isolation
- · We are an odd mixture of special purpose and general purpose hardware
 - Special purpose
 - · Recognizing visual patterns
 - · Learning and reproducing language
 - General Purpose
 - Theorem proving
 - · Learning and excelling at new tasks
- Seamless integration

Early Efforts: General

Good news:

- Many problems can be formalized as instances of
- Search
- Logical deduction
- The space of all proofs is a (somewhat) searchable space
- Knowledge base + theorem proving provide a satisfying picture or reasoning, knowledge and learning
 - Tell PC:
 - All men are mortal
 - Socrates is a man
 - · Ask:
 - Is Socrates mortal?

Bad news for general methods

- · Searching in proof space is hard
- Even if searching were easy, representing knowledge is hard
 - What is a chair?
- Knowledge is interconnected in subtle ways
 - Chairs
 - People
 - Gravity
 - Customs...

Early Efforts: Special Purpose Methods

- Neural networks attempted to reproduce the function of human neurons
- Wing-flapping mechanical flying machine?
- Success at reproducing low-level tasks
 Pattern recognition, associative memory
- Huge gap between low and high level
- Nearly became a religion

Overpromising and the Al Winter

- Years of
 - Naïve optimistic
 - Unrealistic assessments of challenges
 - Poor scientific/academic discipline
- Lead to (early 90's)
- Backlash
- Reduced government funding
- Reduced investment from industry
- The "Al Winter"

AI Moving Forward

- Study broad classes of problems
- Restrict problem somewhat:
 Develop a crisp input specification
 - Develop a well-defined success criterion
- Develop results with
 - Provable properties
 - Broad applicability
- Extract and study underlying principles behind successful methods

Conclusion

- We want to solve hard problems that would traditionally require human-level intelligence. (Most we consider are at least NP-hard.)
- We want to be good computer scientists, so we force ourselves to use well-defined input/output specifications.
- We aim high, but we let ourselves simplify things if it allows us to produce a general-purpose tool with well-understood properties.