
1

Planning I

CPS 170

Ron Parr

What Is Planning – An Example

Space shuttle arm is currently controlled by a highly trained human.

Planning Application

• Remove human from the control loop
• Specific goals for system:

– Rearrange items in cargo bay

– Connect space station pieces

• Assuming mechanical engineering
issues can be resolved:
– Arm could work while astronauts sleep
– Complicated training could be eliminated

Characterizing Planning Problems

• Start state (group of states)
• Goal – almost always a group of states
• Actions
• Plan: A sequence of actions that is

guaranteed to achieve the goal.
• So, how is this different from search?

Like everything else, we can view planning as search.

What makes planning special?

• States typically specified by a set of relations
or propositions:
– On(solar_panels, cargo_floor)

– arm_broken

• Typically we make a closed world
assumption:
– We only state that which is true
– All else is assumed false

– Why?

Planning With Logic

• Need to describe
effects of actions
with logic

• Test for the
existence of plans
that achieve our
goals

• Difficulties
– Consistency

– Frame problem

x

Y

z

2

Specifying Actions

• Describing action effects is tricky

• Need a compact way of describing what
changes and what does not change
– The union of these is everything in the world
– Can’t afford to enumerate these for every action

• Standard approach: use STRIPS rules
– Preconditions, add-list, delete-list

STRIPS

• Closed world assumption

• Preconditions specify when action is valid
• Think of the world as a database

– Add list specifies what new things are true after
taking the action (add to DB)

– Delete list specifies what things are no longer
true (delete from DB)

move(obj,from,to)

• Preconditions
– clear(obj)
– on(obj,from)
– clear(to)

• Delete list
– on(obj,from)
– clear(to)

• Add list
– on(obj,to)
– clear(from)

x

y

z

move(y,x,z)

Limitations of STRIPS

• Strips assumes that a small number of
things change with each action
– Dominoes

– Pulling out the bottom block from a stack

• Preconditions and effects are
conjunctions

• No quantification

Planning Actions vs. Search Actions

• Plan actions are really action schemata

• Every strips rule specifies a huge number of
ground-level actions

• Consider move(obj, from, to)
– Assume n objects in the world
– This action alone specifies O(n3) ground actions

– Planning tends to have a very large action space

• Compare with CSPs

Planning vs. CSPs

• Both have large action spaces

• CSPs are atemporal
• We generally permit negations in CSPs, but

try to avoid them in many planning
formulations

• Effects of actions (assignments) are implicit

• The path matters: Knowing that solution
exists isn’t sufficient

3

Heuristics in planning

• In search, we assume that we can come
up with reasonable heuristics

• Planning problems tend to defy natural
efforts to develop good heuristics

• This is most evident in plans with
conjunctive goals

• Making progress towards one conjunct
can foil the other

The Sussman Anomaly

z

yx z

y

x

Goal: on(x,y), on(y,z)

Problems with naïve subgoaling

• The number of conjuncts satisfied may not be
a good heuristic

• Achieving individual conjuncts in isolation may
actually may things harder

• Causes simple planners to go into loops

z

yx z

y

x

Summary: Planning Features

• State space is very large

• Goals usually defined over state sets
• Very large, implicitly defined action space

• Difficult to come up with good heuristics

• Path (plan) usually matters

How hard is planning?

• Planning is NP hard

• How can we prove this?
– Reduce 3SAT to planning

– Tricky if we don’t permit negations

– Make truth value a variable

– val(xi,true), val(xi, false), val(xi, undecided)

3SAT Reduction

• Given a 3SAT instance, what is our goal?

• Goal is a conjunction of all of the clauses
• Goal: satisfied(cj) for all clauses cj

• What are our actions?

• set_true(xi, val), set_false(xi, val), satisfy_cj

• Start: unassigned(xi) for all i

4

set_true(xi)

• Preconditions
– val(xi, undecided)

• Delete list
– val(xi, undecided)

• Add list
– val(xi, true)

• set_false is similar

satisfy_cj

• For each clause cj = (xa, xb, xc) with
truth values ta, tb, tc, we make three
actions, one for each variable, e.g.,:

• Preconditions:
– val(xa, ta)

• Delete list

• Add list
– satisfied(cj)

Why this works:

• Set actions force us to assign values to variables

• Once variables are set they can’t be changed

• Clauses satisfied if any literals are satisfied

• We must satisfy all clauses to achieve the goal

• Goal is achievable iff formula is satisfiable

Is planning NP-complete?

• NO!

• Consider the towers of Hanoi:
– http://www.mazeworks.com/hanoi/index.htm

– Actions are exactly the same as the blocks
moving actions

• Requires exponential number of moves

• Planning is actually PSPACE complete

• Planning with bounded plans is NP-complete

Should plan size worry us?

• What if you have a problem with an
exponential length solution?

• Impractical to execute (or even write down)
the solution, so maybe we shouldn’t worry

• Sometimes this may just be an artifact of our
action representation
– Towers of Hanoi solution can be expressed as a

simple recursive program

– Nice if planner could find such programs

Advanced Planning Topics

• Research topic: automating abstraction
– People solve towers of Hanoi by formulating

high-level or abstract actions
– Moving an entire subtower to another peg is

formulated as an abstract action

• Research topic: Hierarchy
– Decompose problem into subproblems
– Combine subproblem solutions

• Using these methods is (relatively) easy
• Devising them automatically is quite hard

5

Planning Algorithms

• Extremely active and rapidly changing area
• Annual competitions pit different algorithms against

each other on suites of challenge problems
• Algorithms compete in different categories

– General
– Domain specific

• Size of planning problems that can be solved has
increased much faster than can be explained only by
Moore’s law in the past decade

Planning As Search

• Despite the special nature of planning
problems, all planning algorithms can
still be understood as variants of search
– Forward search

• Closest to classical search formulation

– Backward search
• Regression or means-ends analysis

– Plan-space search
• Closest to GSAT/walkSAT

Goal Regression

• Goal regression is a form of backward search from
goals (ends)

• Basic principle goes back to Aristotle

• Embodied in earliest AI systems
– GPS: General Problem Solver by Newell & Simon

• Cognitively plausible

• Idea:
– Pick actions that achieve (some of) your goal

– Make preconditions of these actions your new goal
– Repeat until the goal set is satisfied by start state

Goal Regression Example

x

y

z

Goal: on(z,x)

Regress on(z,x)
through move(z,table,x)

New goal:
clear(x)

Facts About Goal Regression

• Elegant solution to the problem of backward
search from multiple goal states
– In planning, goal state is usually a set of states

– Goal regression does backward search at the
level of state sets

• Goal regression is sound and complete
• Need to be careful to avoid endless loops on

problems like Sussman anomaly

Plan Space Search

• Aim: Address subgoal interactions directly
• Start with a broken (often empty) plan

• Identify how the plan is broken
– Unsatisfied preconditions or goals

– Conflicting effects

• Modify plan to fix (some) problems
– Rearrange actions
– Add new actions

• This was a very popular view of planning until
the mid 90s

6

Plan Space Search

• Plan space search tends to be messy
– Plan modifications are complicated

– Want to fix problems w/o creating new ones

– Ensuring completeness and soundness is tricky
• Planner must always find a plan if one exists

• Plans actually should work

• Plan space search did well for many years
because of the difficulty in coming up with
good heuristics and the lack of fast, general
methods for handling planning constraints

Issues

• Is forward search salvageable?

• Can we exploit structure in some way?

• What do the “modern” planners do?

