Planning |

CPS 170
Ron Parr

Planning Application

* Remove human from the control loop
 Specific goals for system:
— Rearrange items in cargo bay
— Connect space station pieces
» Assuming mechanical engineering
issues can be resolved:
— Arm could work while astronauts sleep
— Complicated training could be eliminated

What Is Planning — An Example

Space shuttle arm is currently controlled by a highly trained human|

Characterizing Planning Problems

Start state (group of states)
» Goal — almost always a group of states
 Actions

Plan: A sequence of actions that is
guaranteed to achieve the goal.

So, how is this different from search?

Like everything else, we can view planning as search.

What makes planning special?

« States typically specified by a set of relations
or propositions:
— On(solar_panels, cargo_floor)
—arm_broken
» Typically we make a closed world
assumption:
— We only state that which is true
— All else is assumed false
—Why?

» Test for the

« Difficulties

Planning With Logic

* Need to describe
effects of actions
with logic

existence of plans
that achieve our
goals

— Consistency
— Frame problem




Specifying Actions

 Describing action effects is tricky
» Need a compact way of describing what
changes and what does not change
— The union of these is everything in the world
— Can't afford to enumerate these for every action
» Standard approach: use STRIPS rules
— Preconditions, add-list, delete-list

STRIPS

* Closed world assumption
» Preconditions specify when action is valid
* Think of the world as a database

— Add list specifies what new things are true after
taking the action (add to DB)

— Delete list specifies what things are no longer
true (delete from DB)

move(obj,from,to)

» Preconditions
— clear(obj)
— on(obj,from)
— clear(to)
* Delete list
— on(obj,from)
— clear(to)
e Add list

—on(obj,to)
— clear(from)

move(y,X,z)

Limitations of STRIPS

« Strips assumes that a small number of
things change with each action
— Dominoes
— Pulling out the bottom block from a stack
» Preconditions and effects are
conjunctions

» No quantification

Planning Actions vs. Search Actions

» Plan actions are really action schemata

» Every strips rule specifies a huge number of
ground-level actions

» Consider move(obj, from, to)

— Assume n objects in the world

— This action alone specifies O(n®) ground actions

— Planning tends to have a very large action space

Compare with CSPs

Planning vs. CSPs

Both have large action spaces
CSPs are atemporal
We generally permit negations in CSPs, but

try to avoid them in many planning
formulations

Effects of actions (assignments) are implicit

The path matters: Knowing that solution
exists isn't sufficient




Heuristics in planning

* In search, we assume that we can come
up with reasonable heuristics

 Planning problems tend to defy natural
efforts to develop good heuristics

 This is most evident in plans with
conjunctive goals

» Making progress towards one conjunct
can foil the other

The Sussman Anomaly

Goal: on(x,y), on(y,z)

Problems with naive subgoaling

» The number of conjuncts satisfied may not be
a good heuristic

* Achieving individual conjuncts in isolation may
actually may things harder

» Causes simple planners to go into loops
X

y
] -

Summary: Planning Features

State space is very large

Goals usually defined over state sets
Very large, implicitly defined action space
Difficult to come up with good heuristics
Path (plan) usually matters

How hard is planning?

 Planning is NP hard
» How can we prove this?
— Reduce 3SAT to planning
— Tricky if we don’t permit negations
— Make truth value a variable
—val(x;true), val(x; false), val(x;, undecided)

3SAT Reduction

Given a 3SAT instance, what is our goal?
Goal is a conjunction of all of the clauses
Goal: satisfied(c) for all clauses c;

What are our actions?

set_true(x;, val), set_false(x; val), satisfy_c;
Start: unassigned(x;) for all i




set_true(x)

Preconditions
—val(x;, undecided)
Delete list

—val(x;, undecided)
Add list

—val(x;, true)
set_false is similar

satisfy_c;

* For each clause ¢; = (xa, xb, xc) with
truth values ta, tb, tc, we make three
actions, one for each variable, e.g.,:

« Preconditions;

—val(xa, ta)

« Delete list

» Add list
— satisfied(c))

Why this works:

Set actions force us to assign values to variables
Once variables are set they can’'t be changed
Clauses satisfied if any literals are satisfied

We must satisfy all clauses to achieve the goal

Goal is achievable iff formula is satisfiable

Is planning NP-complete?

NO!
Consider the towers of Hanoi:

— http://www.mazeworks.com/hanoi/index.htm

— Actions are exactly the same as the blocks
moving actions

Requires exponential number of moves
Planning is actually PSPACE complete

Planning with bounded plans is NP-complete

Should plan size worry us?

* What if you have a problem with an

exponential length solution?

 Impractical to execute (or even write down)

the solution, so maybe we shouldn’t worry

» Sometimes this may just be an artifact of our

action representation

— Towers of Hanoi solution can be expressed as a

simple recursive program

— Nice if planner could find such programs

Advanced Planning Topics

Research topic: automating abstraction

— People solve towers of Hanoi by formulating
high-level or abstract actions

— Moving an entire subtower to another peg is
formulated as an abstract action

Research topic: Hierarchy

— Decompose problem into subproblems

— Combine subproblem solutions

Using these methods is (relatively) easy
Devising them automatically is quite hard




Planning Algorithms

Extremely active and rapidly changing area

Annual competitions pit different algorithms against
each other on suites of challenge problems
Algorithms compete in different categories

— General

— Domain specific

* Size of planning problems that can be solved has

increased much faster than can be explained only by

Moore’s law in the past decade

Planning As Search

+ Despite the special nature of planning
problems, all planning algorithms can
still be understood as variants of search
— Forward search

* Closest to classical search formulation
— Backward search

* Regression or means-ends analysis
— Plan-space search

* Closest to GSAT/walkSAT

Goal Regression

» Goal regression is a form of backward search from
goals (ends)
 Basic principle goes back to Aristotle
* Embodied in earliest Al systems
— GPS: General Problem Solver by Newell & Simon
» Cognitively plausible
* ldea:
— Pick actions that achieve (some of) your goal
— Make preconditions of these actions your new goal
— Repeat until the goal set is satisfied by start state

Goal Regression Example

Regress on(z,x)
through move(z,table,x)

New goal:
clear(x)

Goal: on(z,x)

Facts About Goal Regression

* Elegant solution to the problem of backward
search from multiple goal states
— In planning, goal state is usually a set of states

— Goal regression does backward search at the
level of state sets

» Goal regression is sound and complete

» Need to be careful to avoid endless loops on
problems like Sussman anomaly

Plan Space Search

* Aim: Address subgoal interactions directly
* Start with a broken (often empty) plan
Identify how the plan is broken

— Unsatisfied preconditions or goals

— Conlflicting effects

Modify plan to fix (some) problems

— Rearrange actions

— Add new actions

» This was a very popular view of planning until
the mid 90s




Plan Space Search

Issues
» Plan space search tends to be messy
— Plan modifications are complicated * Is forward search salvageable?
— Want to fix problems w/o creating new ones
— Ensuring completeness and soundness is tricky « Can we exploit structure in some way?

» Planner must always find a plan if one exists
* Plans actually should work
 Plan space search did well for many years
because of the difficulty in coming up with
good heuristics and the lack of fast, general
methods for handling planning constraints

« What do the “modern” planners do?




