Logic Programming Systems

CPS 170
Ron Parr

Automating Reasoning

» Want a sound and complete procedure

» Need to represent information in our
database in a canonical form

» Need to understand the factors that

influence the efficiency of our reasoning
system

Proofs by Resolution

« Convert to canonical form
 Assert negation of the proof target
» Resolve until “nil” is obtained

* Why can’'t we bound the number of
resolution steps we need to take?

» Example on board...

Speeding Up Resolution

» There are many heuristics for speeding up
resolution — we can view it as a special kind
of search

» As with propositional logic, we can also
consider special cases

« Al has a colorful history of special case
logics and special case reasoning engines
for handling these logics

Implementation Issues

Any reasoning system must be able to rapidly
identify relevant sentences in its KB

Maintain multiple indices:

— Alist of positive literals for each predicate symbol

— Alist of negative literals for each predicate symbol

— Alist of sentences with this predicate as conclusion

— Alist of sentences with this predicate as premise
More sophisticated, tree-based indexing schemes
are possible

Unification

* We need to avoid circular unifications
 Consider Unify(P(x,f(x)),P(y,y))=???
* What happens:
—Bind xtoy
—-Bindf(x) toy
— This implies x is bound f(x)
— This is circular
» Checking called an “occurs check”
» O(n?) to check this (many systems don't)




Prolog

Prolog is a grand effort to make logic a
practical programming method

Prolog is a declarative language

— State the things that are true

— Ask the system to prove things

— All computations are essentially proofs

Prolog makes many restrictions on KB

My bias: Prolog is a fascinating way to think
about logic and programming, but is of
waning importance in Al

Prolog Properties

» KB is sequences of sentences
(all implicitly conjoined)
« All sentences must be horn
« Can use constants, variables, or functions
» Queries can include conjunctions or
disjunctions
» Cannot assert negations
— Closed world assumption
— Everything not implied by the KB is assumed false

Prolog Properties

All syntactically distinct terms refer to
distinct objects

— Two variables can be =

— Two objects cannot be =

Built in predicates for arithmetic

Build in list handling as part of the
unification process

Prolog Implementation

* Inferences are done with backward chaining
* Is this complete?
* What is the computational complexity?

» Conjuncts are tried in left to right order
(as entered in the KB)

* Tries implications in order they are entered
» No occurs check (in most Prologs)

Prolog Ul

Load a database using consult

Consult(user) loads database from the
command line ctrl-d to terminal

Consult(file) loads database from a file.
Some prologs use [file].

Prolog Syntax

Variables are upper case

Constants are lower case

Implication :-

Universal quantification is implicit

Sentences are terminated with a .

Specify RHS first: Mortal(X):-Man(X)
Conjunction with ,: Mortal(X):-Man(X),Living(X).




Prolog Syntax Prolog Bindings

Lists [Head|Tail]

— Head is bound to first element of list
— Tail is bound to remainder of list

— Append

Numbers

— Numbers are assigned with “is”

— Checked with =, =<, =>

Use = to check if two bindings are same

» Use \==to check if they are different

Hit enter at the end of query to stop search

Use ; to get multiple answers




