
1

Logic Programming Systems

CPS 170

Ron Parr

Automating Reasoning

• Want a sound and complete procedure

• Need to represent information in our
database in a canonical form

• Need to understand the factors that
influence the efficiency of our reasoning
system

Proofs by Resolution

• Convert to canonical form

• Assert negation of the proof target

• Resolve until “nil” is obtained
• Why can’t we bound the number of

resolution steps we need to take?
• Example on board…

Speeding Up Resolution

• There are many heuristics for speeding up
resolution – we can view it as a special kind
of search

• As with propositional logic, we can also
consider special cases

• AI has a colorful history of special case
logics and special case reasoning engines
for handling these logics

Implementation Issues

• Any reasoning system must be able to rapidly
identify relevant sentences in its KB

• Maintain multiple indices:
– A list of positive literals for each predicate symbol
– A list of negative literals for each predicate symbol

– A list of sentences with this predicate as conclusion
– A list of sentences with this predicate as premise

• More sophisticated, tree-based indexing schemes
are possible

Unification

• We need to avoid circular unifications

• Consider Unify(P(x,f(x)),P(y,y))=???

• What happens:
– Bind x to y

– Bind f(x) to y

– This implies x is bound f(x)

– This is circular

• Checking called an “occurs check”

• O(n2) to check this (many systems don’t)

2

Prolog

• Prolog is a grand effort to make logic a
practical programming method

• Prolog is a declarative language
– State the things that are true
– Ask the system to prove things

– All computations are essentially proofs

• Prolog makes many restrictions on KB

• My bias: Prolog is a fascinating way to think
about logic and programming, but is of
waning importance in AI

Prolog Properties

• KB is sequences of sentences
(all implicitly conjoined)

• All sentences must be horn
• Can use constants, variables, or functions
• Queries can include conjunctions or

disjunctions
• Cannot assert negations

– Closed world assumption
– Everything not implied by the KB is assumed false

Prolog Properties

• All syntactically distinct terms refer to
distinct objects
– Two variables can be =

– Two objects cannot be =

• Built in predicates for arithmetic

• Build in list handling as part of the
unification process

Prolog Implementation

• Inferences are done with backward chaining

• Is this complete?
• What is the computational complexity?

• Conjuncts are tried in left to right order
(as entered in the KB)

• Tries implications in order they are entered

• No occurs check (in most Prologs)

Prolog UI

• Load a database using consult

• Consult(user) loads database from the
command line ctrl-d to terminal

• Consult(file) loads database from a file.
• Some prologs use [file].

Prolog Syntax

• Variables are upper case

• Constants are lower case
• Implication :-

• Universal quantification is implicit

• Sentences are terminated with a .

• Specify RHS first: Mortal(X):-Man(X)

• Conjunction with ,: Mortal(X):-Man(X),Living(X).

3

Prolog Syntax

• Lists [Head|Tail]
– Head is bound to first element of list
– Tail is bound to remainder of list

– Append

• Numbers
– Numbers are assigned with “is”
– Checked with =, =<, =>

Prolog Bindings

• Use = to check if two bindings are same

• Use \== to check if they are different

• Hit enter at the end of query to stop search

• Use ; to get multiple answers

