Markov Decision Processes
&
Reinforcement Learning

(Lecture 1)

Ron Parr
CPS 170

« Decision Theory

The Winding Path to RL

« Descriptive theory of optimal
behavior

« Markov Decision Processes « Mathematical/Algorithmic realization

of Decision Theory

« Reinforcement Learning « Application of learning techniques to

challenges of MDPs with numerous
or unknown parameters

Covered Today

 Decision Theory (quick review)
* MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Utility Functions

« A utility function is a mapping from

world states to real numbers
Also called a value function

Rational or optimal behavior is typically
viewed as maximizing expected utility:

max Y P(sla)U(s)

a = actions, s = states

Swept under the rug today...

« Utility of money (assumed 1:1)
* How to determine costs/utilities

» How to determine probabilities

Playing a Game Show

Assume series of questions

— Increasing difficulty

— Increasing payoff

Choice:

— Accept accumulated earnings and quit
— Continue and risk losing everything

“Who wants to be a millionaire?”

State Representation
(simplified game)

Start
$100

1 correct
$1,000

2 correct
$10,000

3 correc

$100 $1,100 $11,100

$100,000

t

$111,100

Working Recursively

V=$3,750 V=%$4,166 V=$5,555

: 9/10 3/4 1/2

$0 $0 $0 $0

$100 $1,100 $11,100

V=$11.11K

1/10

Covered Today

» Decision Theory

* MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Making Optimal Decisions
* Work backwards from future to present

» Consider $100,000 question
— Suppose P(correct) = 1/10
— V(stop)=$11,100

— V(continue) = 0.9*$0 + 0.1*$111,100K = $11,110K

» Optimal decision CONTINUES through last step

Decision Theory Summary

Provides theory of optimal decisions

Principle of maximizing utility

Easy for small, tree structured spaces with
— Known utilities

— Known probabilities

Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

: 9/10 3/4 1/2 1/10
$0 $0 $0 $0
$-1000 ¢ ¢ ¢

$100 $1,100 $11,100

From Policies to Linear Systems

» Suppose we always pay until we win.
» What is value of following this policy?

V(s)=0.10(-1000+V (s))) +0.90V(s)
V(s) =0.25(-1000+V(s,)) +0.75V(s,)
V(s,) =0.50(-1000+V(s))) +0.50V (s,)
V(s,) =0.90(-1000+V (s,)) +0.10(111100)

Y Y
Return to Start Continue

And the solution is...

V=$3.7K V=$4.1K V=$5.6K V=$11.1K W/o

* # * # cheat

V=$90.5K V=$90.6K V=$90.9K V=$92.4K

C : 9/10 C : 3/4 :: 172 :: 1/10

$-1000

Is this optimal?
How do we find the optimal policy?

The MDP Framework

State space: S

« Action space: A
Transition function: P
« Reward function: R
Discount factor: Y
Policy: n(s) - a

Objective: Maximize expected, discounted return
(decision theoretic optimal behavior)

Applications of MDPs

Al/Computer Science
— Robotic control
(Koenig & Simmons, Thrun et al., Kaelbling et al.)
— Air Campaign Planning (Meuleau et al.)
— Elevator Control (Barto & Crites)
— Computation Scheduling (Zilberstein et al.)
— Control and Automation (Moore et al.)
— Spoken dialogue management (Singh et al.)
— Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

« Economics/Operations Research
— Fleet maintenance (Howard, Rust)
— Road maintenance (Golabi et al.)
— Packet Retransmission (Feinberg et al.)
— Nuclear plant management (Rothwell & Rust)

The Markov Assumption

Let S, be arandom variable for the state at time t
P(SdAL1St1:---A0S0) = P(Si|A¢1St4)
Markov is special kind of conditional independence

Future is independent of past given current state

Understanding Discounting

* Mathematical motivation
— Keeps values bounded
— What if | promise you $0.01 every day you visit me?

» Economic motivation
— Discount comes from inflation
— Promise of $1.00 in future is worth $0.99 today

» Probability of dying
— Suppose ¢ probability of dying at each decision interval
— Transition w/prob ¢ to state with value 0
— Equivalent to 1-¢ discount factor

Discounting in Practice

» Often chosen unrealistically low
— Faster convergence
— Slightly myopic policies

» Can reformulate most algs for avg reward
— Mathematically uglier
— Somewhat slower run time

Covered Today

Decision Theory
* MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Value Determination

Determine the value of each state under policy 1t

V() =R(s,71(8) +y) P(SIS,mS)V(S)

Bellman Equation

0@
e @)
@)

V() =1+y(0.4V(s,)+0.6V(sy))

Matrix Form

P(s18,T(s;)) P(s,18,T(sy)) P(s;185,TU(Sy))

V=yP V+R

How do we solve this system?

(PIss) P Isms) P(s1s.ms)
P=tP(sqlsz,n(sz)) P(s; |5, T(s,)) P(%Isz,n(sz))J

Solving for Values

V=P V+R

For moderate numbers of states we can solve this system exacty:

V=(-p) "R
H_J

Guaranteed invertible because P,
has spectral radius <1

Iteratively Solving for Values

V=jP\V+R

For larger numbers of states we can solve this system indirectly:

\VAS :ypﬂVi +R

Guaranteed convergent because JP,
has spectral radius <1

Establishing Convergence

* Eigenvalue analysis

« Monotonicity
— Assume all values start pessimistic
— One value must always increase
— Can never overestimate

 Contraction analysis...

Contraction Analysis

* Define maximum norm
V[, = max;V;
e Consider V1 and V2
V-V, =€
* WLOG say

V, gV, +&

Contraction Analysis Contd.

« At next iteration for V2:
2 _ R+ yPV2
e For V1

V' =R+ PV S R+ PV +8) = R+)PV + P = R+ PV +)&

_/V
Distribute
‘b/z‘ —VI‘

e Conclude:

<)

o

Importance of Contraction

» Any two value functions get closer
 True value function V* is a fixed point

¢ Max norm distance from V* decreases
exponentially quickly with iterations

ey

S VRV

<y's

Covered Today
» Decision Theory
« MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Finding Good Policies

Suppose an expert told you the “value” of each state:

Action 1 Action 2

Improving Policies

» How do we get the optimal policy?

» Need to ensure that we take the optimal action
in every state:

V(s) =max, > R(sa)+P(slsaV(s)

Decision theoretic optimal choice given V

Value lteration

We can't solve the system directly with a max in the equation
Can we solve it by iteration?

Vii(s) =max,) _R(sa)+P(sIsaVi(s)

Called value iteration or simply successive approximation
*Same as value determination, but we can change actions

«Convergence:
» Can't do eigenvalue analysis (not linear)
« Still monotonic
« Still a contraction in max norm (exercise)
« Converges exponentially quickly

Optimality
« VI converges to optimal policy

- Why?

Optimal policy is stationary

- Why?

Covered Today
* Decision Theory
« MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Greedy Policy Construction
Pick action with highest expected future value:

71(s) = argmax, R(s,a) + VZS- P(sls,a)V(s)

~ _
~—

Expectation over
next-state values

n=greedy(V)

Consider our first policy

V=$3.7K V=$4.1K V=$5.6K V=$11.1K W/o
cheat

9/10 3/4 172 1/10
i e

Recall: We played until last state, then quit

Is this greedy with cheat option?

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess V Repeat until
1= greedy(V) epeat unti ’

] policy doesn’t
V = value of acting on Tt change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

e VI
— Value changes at every step
— Policy may change at every step
— Many cheap iterations
e PI
— Alternates policy/value udpates
— Solves for value of each policy exactly
— Fewer, slower iterations (need to invert matrix)
* Convergence
— Both are contractions in max norm
— Plis shockingly fast in practice (why?)

Covered Today
* Decision Theory
« MDPs

* Algorithms for MDPs
— Value Determination
— Optimal Policy Selection
« Value lteration
« Policy lteration
« Linear Programming

Linear Programming

V(s) =R(s,a) + ymax_ ZS, P(sls,aV(s)
Issue: Turn the non-linear max into a collection of linear constraints

Os,a:V(s) 2 R(s,a) + VZS- P(sls,aV(s)

— _/

Y
MINIMIZE: ZV(s)
S

Optimal action has
tight constraints

Weakly polynomial; slower than Plin practice.

MDP Difficulties — RL

» MDP operate at the level of states

— States = atomic events

— We usually have exponentially (infinitely) many of these
* Weassumes P and R are known

* Machine learning to the rescue!
— Infer P and R (implicitly or explicitly from data)
— Generalize from small number of states/policies

