Markov Decision Processes Reinforcement Learning

(Lecture 1)

Ron Parr **CPS 170**

The Winding Path to RL

- Decision Theory
- · Descriptive theory of optimal behavior .
- · Markov Decision Processes
- Mathematical/Algorithmic realization of Decision Theory
- Reinforcement Learning
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Covered Today

- · Decision Theory (quick review)
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration

 - Policy Iteration
 Linear Programming

Utility Functions

- A utility function is a mapping from world states to real numbers
- Also called a value function
- Rational or optimal behavior is typically viewed as maximizing expected utility:

$$\max_{a} \sum_{s} P(s \mid a) U(s)$$

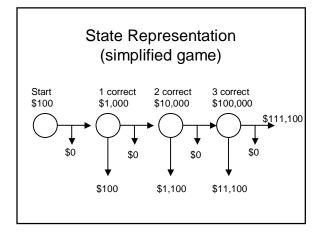
a = actions, s = states

Swept under the rug today...

- Utility of money (assumed 1:1)
- · How to determine costs/utilities
- · How to determine probabilities

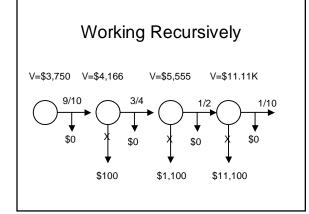
Playing a Game Show

- · Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"



Making Optimal Decisions

- Work backwards from future to present
- Consider \$100,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$111,100K = \$11,110K
- Optimal decision CONTINUES through last step



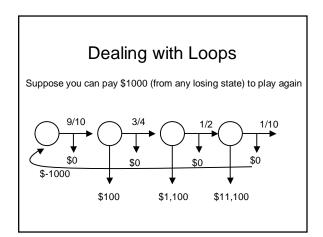
Decision Theory Summary

- · Provides theory of optimal decisions
- Principle of maximizing utility
- · Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Covered Today

- · Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration

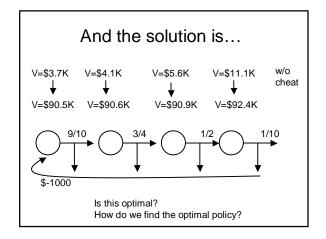
 - Policy Iteration
 Linear Programming



From Policies to Linear Systems

- · Suppose we always pay until we win.
- What is value of following this policy?

```
\begin{split} V(s_0) &= 0.10(-1000 + V(s_0)) + 0.90V(s_1) \\ V(s_1) &= 0.25(-1000 + V(s_0)) + 0.75V(s_2) \\ V(s_2) &= 0.50(-1000 + V(s_0)) + 0.50V(s_3) \\ V(s_3) &= 0.90(-1000 + V(s_0)) + 0.10(111100) \end{split} Return to Start Continue
```



The MDP Framework

State space: S
Action space: A
Transition function: P
Reward function: R
Discount factor: γ
Policy: π(s) → a

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)

Applications of MDPs

- Al/Computer Science
 - Robotic control
 - (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t|A_{t-1}S_{t-1},...,A_0S_0) = P(S_t|A_{t-1}S_{t-1})$
- · Markov is special kind of conditional independence
- Future is independent of past given current state

Understanding Discounting

- · Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- · Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1-ε discount factor

Discounting in Practice

- · Often chosen unrealistically low
 - Faster convergence
 - Slightly myopic policies
- · Can reformulate most algs for avg reward
 - Mathematically uglier
 - Somewhat slower run time

Covered Today

- · Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration

 - Policy Iteration
 Linear Programming

Value Determination

Determine the value of each state under policy π

$$V(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s')$$

Bellman Equation

$$V(s_1) = 1 + \gamma(0.4V(s_2) + 0.6V(s_3))$$

Matrix Form

$$\mathbf{P} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$\boldsymbol{V} = \gamma \boldsymbol{P}_{\!\pi} \boldsymbol{V} + \boldsymbol{R}$$

How do we solve this system?

Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V} = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} \mathbf{R}$$

Guaranteed invertible because P_{π} has spectral radius <1

Iteratively Solving for Values

$$\mathbf{V} = \gamma \mathbf{P}_{\pi} \mathbf{V} + \mathbf{R}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{i+1} = \gamma \mathbf{P}_{\pi} \mathbf{V}^{i} + \mathbf{R}$$

Guaranteed convergent because ${\cal P}_\pi$ has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
- Assume all values start pessimistic
- One value must always increase
- Can never overestimate
- · Contraction analysis...

Contraction Analysis

• Define maximum norm

$$||V||_{\infty} = \max_{i} V_{i}$$

• Consider V1 and V2

$$\|V_1 - V_2\|_{\infty} = \varepsilon$$

• WLOG say

$$V_1 \le V_2 + \vec{\varepsilon}$$

Contraction Analysis Contd.

At next iteration for V2:

$$V^{2'} = R + \gamma P V^2$$

• For V

$$V^{1} = R + \gamma P(V^{1}) \le R + \gamma P(V^{2} + \vec{\varepsilon}) = R + \gamma PV^{2} + \gamma P \vec{\varepsilon} = R + \gamma PV^{2} + \gamma \vec{\varepsilon}$$

Conclude:

$$\left\|V^{2'}-V^{1'}\right\|_{L^{2}}\leq \gamma \varepsilon$$

Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point
- Max norm distance from V* decreases exponentially quickly with iterations

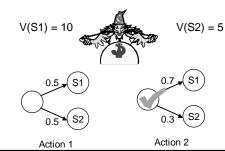
$$\left\|V^{0}-V^{*}\right\|_{\infty}=\varepsilon \rightarrow \left\|V^{(n)}-V^{*}\right\|_{\infty} \leq \gamma^{n}\varepsilon$$

Covered Today

- · Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Finding Good Policies

Suppose an expert told you the "value" of each state:



Improving Policies

- · How do we get the optimal policy?
- · Need to ensure that we take the optimal action in every state:

$$V(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V(s')$$

Decision theoretic optimal choice given V

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V^{\text{\tiny i+1}}(s) = \max_{a} \sum_{s'} R(s, a) + \gamma P(s'|s, a) V^{\text{\tiny i}}(s')$$

- •Called value iteration or simply successive approximation
- •Same as value determination, but we can change actions

•Convergence:

- · Can't do eigenvalue analysis (not linear)
- Still monotonic
- Still a contraction in max norm (exercise)
- · Converges exponentially quickly

Optimality

- · VI converges to optimal policy
- · Why?
- · Optimal policy is stationary
- · Why?

Covered Today

- · Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - · Policy Iteration
 - Linear Programming

Greedy Policy Construction

Pick action with highest expected future value:

$$\pi(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

Expectation over next-state values

$$\pi = \operatorname{greedy}(V)$$

Consider our first policy V=\$3.7K V=\$4.1K V=\$5.6K V=\$11.1K w/o cheat 9/10 3/4 1/2 1/10 Recall: We played until last state, then quit ls this greedy with cheat option?

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess V π = greedy(V) V = value of acting on π

Repeat until policy doesn't change

Guaranteed to find optimal policy Usually takes very small number of iterations Computing the value functions is the expensive part

Comparing VI and PI

- VI
 - Value changes at every step
 - Policy may change at every step
 - Many cheap iterations
- Pl
 - Alternates policy/value udpates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is shockingly fast in practice (why?)

Covered Today

- · Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Linear Programming

$$V(s) = R(s, a) + \gamma \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

Issue: Turn the non-linear max into a collection of linear constraints

$$\forall s, a : V(s) \ge R(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s')$$

MINIMIZE: $\sum V(s)$

Optimal action has tight constraints

Weakly polynomial; slower than PI in practice.

MDP Difficulties → RL

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (infinitely) many of these
- We assumes P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies