

What is robotics?

- Mechanical man ideas go back at least to the Greeks
- Term comes from Czech playwright Karel Capek (or perhaps from his brother Josef) ~1917-1921

 "robota" (obligatory work)
 "robotnik" (serf)
- "Robotics" first used by Asimov in 1950
- Agents with physical embodiment
 - Sensors
 - Effectors
- Human-shaped robots = humanoids

Common Robot Applications

- Industry and agriculture

 Building cars
 Harvesting crops
- Mapping and Exploration

 Mines
 Mars
- Transportation
- Delivery of mail/equipment
 Military applications
 Medical devices
- Medical devices
 Household aids
- Entertainment
- Human augmentation

Robot Effector Types

- Many effector types simply move the robot – Wheels
 - Tracks
 - Legs
- Robot arms/hands
 - Usually not attached to mobile robots (some exceptions)
 - Used in factory automation

Robot Effector Complexity

- Degree of Freedom (DOF)
 - Independent direction of movement
 - Rigid body in space = 6DOF (X, Y, Z, yaw, roll, pitch)
- Dynamic state (DOF x2 for derivatives)
- Effective DOF can be > true DOF - e.g. car (2 actual, 3 effective)
 - effective > true = nonholonomic

Types of Robot Sensors

- Cameras
- · Laser/Sonar/IR range finders
- Microphones
- Odometers
- Inertial sensors
- GPS
- Force/Torque/touch sensors

Perception

- Perception is often a probabilisitc inference problem
- Want P(S|O) (state given observations)
- Model P(O|S) (sensor model)
- Use Bayes rule
- Localization (position estimation) is an HMM tracking problem (next lecture)

Motion Planning

- Planning is typically done in configuration space
- · Configuration space includes
 - Physical position
 - Orientation
 - Joint Angles
- Path planning problem: Find path between two points in configuration space

Challenges of Configuration Space

 Problems are typically specified in a working space – which underdetermines the configuration

Obstacles

- Problematic in "real" space
- Even simple shapes become complicated in configuration space

Approaches to Planning

- Cell decomposition (discretization)
 - Break continuous space into discrete cells
 Plan using search or MDP (covered later) techniques
- Discretization issues
 - Doesn't scale well with dimension
 - Only an approximation

Approaches to Planning

Skeletonization

- Define a graph of connected points in free space
 Planning = search on the graph
- Problem: Constructing the graph
- Probabilistic Road Map (PRM)
 - Randomly spray points
 - Discard illegal ones
 - Connect nearby ones
 - Plan on resulting graph
 - Incomplete in general
 - Succeeds WHP under some assumptions

Executing Plans

- Skeletonization assumes deterministic movement – may require replanning
- MDP techniques (discussed in detail later) devise a universal plan for all (discrete) states
- Control theory can be used for continuous problems to keep the robot on track

Reactive Control

- Some say that roboticists over-formalize
- Reactive control advocates hard coding simple, reactive mechanisms
- Works very well for some problems
- Does it scale?

Conclusions

- Robotics is a huge field as large as AI itself
- Fertile ground for many AI techniques
- Involves many issues not directly addressed by typical AI approaches
 - Sensing issues
 - Effecting issues