
1

CPS 170
Search I

Ron Parr

What is Search?

• Search is a basic problem-solving method

• We start in an initial state

• We examine states that are (usually)
connected by a sequence of actions to the
initial state

• We aim to find a solution, which is a
sequence of actions that brings us from the
initial state to the goal state, minimizing cost

Overview

• Problem Formulation

• Uninformed Search
– DFS, BFS, IDDS, etc.

• Informed Search
– Greedy, A*

• Properties of Heuristics

Problem Formulation

• Four components of a search problem
– Initial State
– Actions

– Goal Test

– Path Cost

• Optimal solution = lowest path cost to goal

Example: Path Planning

1

2

1

1

1

3

3

2
1

1

2

1

Start

Goal

Find shortest route from one city to another using highways.

Example 8(15)-puzzle

8 3 4

1 7

2 6 5

4

1 2

3 5

6 7 8

Possible
Start State

Goal State

Solution

Actions: UP, DOWN, RIGHT, LEFT

2

“Real” Problems

• Robot motion planning

• Drug design
• Logistics

– Route planning

– Tour Planning

• Assembly sequencing

• Internet routing

Why Use Search?

• Other algorithms exist
for these problems:
– Dijkstra’s Algorithm

– Dynamic programming
– All-pairs shortest path

Basic Search Concepts

• Assume a tree-structured space (for now)
• Nodes: Places in search tree

(states exist in the problem space)
• Search tree: portion of state space visited so far

• Expansion: Generation of successors for a state

• Frontier: Set of states visited, but not expanded

• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d

Example Search Tree

Frontier

b=2

Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

fringe = Make-Queue(Make-Node(Initial-State(problem)))
loop do

if empty(fringe) then return failure
node = pop(fringe)
if Goal-Test(problem, state) then return node
fringe = Add-To-Queue(fringe, expand(node, problem)

end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

• Completeness:
–

• Optimality:
–

• Time complexity

• Space complexity

3

Uninformed Search: BFS

Frontier is a FIFO

1

2 3

4 5 6 7

BFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

Uninformed Search: DFS

Frontier is a LIFO

1

2 5

3 4 6 7

DFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

Iterative Deepening

• Want:
– DFS memory requirements
– BFS optimality, completeness

• Idea:

IDDFS

4

IDDFS Properties

• Completeness:

• Optimality:

• Time complexity:

• Space complexity:

Proof: Assume the tree bottoms out at depth d, BFS visits:

In the worst case, IDDFS does no more than:
12 −d

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes
for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!

Bi-directional Search

Initial
State

Goal

Issues with Bi-directional Search

Informed Search

• Idea: Give the search algorithm hints
• Heuristic function: h(x)

• h(x) = estimate of cost to goal from x

• If h(x) is 100% accurate, then we can
find the goal in O(bd) time

Greedy Search

• Expand node with lowest h(x)

• Optimal if h(x) is 100% correct

• How can we get into trouble with this?

5

What Price Greed?

h=1 h=1 h=1 h=1 h=1Initial
State

Goal

h=2

What’s broken with greedy search?

h=1

A*

• Path cost so far: g(x)

• Total cost estimate: f(x) = g(x) + h(x)

• Maintain frontier as a priority queue

• O(bd) time if h is 100% accurate

• We want h to be an admissable heuristic
• Admissable: never overestimates cost

A* Properties

Theorem: A* is optimal if h(x) is admissable.

Does A* fix the greedy problem?

h=1 h=1 h=1 h=1 h=1Initial
State

Goal

h=2
h=1

Properties of Heuristics

• h2 dominates h1 if h2(x)>h1(x) for all x

• Does this mean that h2 is better?
• Suppose you have multiple admissable

heuristics. How do you combine them?

Developing Heuristics

• Is it hard to develop admissable heuristics?

• What are some heuristics for the 8 puzzle?
• What is a general strategy for developing

admissable heuristics?

6

Other Issues

• Graphs
– What issues arise?
– Monotonicity

• Non-uniform costs

• Accuracy of heuristic

• A* is optimally efficient

