
1

CPS 270
Alternative Search Techniques

Ron Parr

Overview

• Memory-bounded Search

• Local Search

• Searching with Incomplete Information

Memory-bounded Search: Why?

• We run out of memory before we run out of time.

• Problem: Need to remember entire search horizon

• Solution: Remember only a partial search horizon

• Issue: Maintaining optimality, completeness
• Issue: How to minimize time penalty

Attempt 1: IDA*

• Iterative deepening A*

• Idea: Like IDDFS, but use the f cost as a cutoff
– Cutoff all searches with f > 1, then f > 2, f > 3, etc.
– Motivation: Cut off bad-looking branches early

• Problems:
– Excessive node regeneration
– Can still use a lot of memory

h=1 h=1

h=2 h=1Cutoff =3

Attempt 2: RBFS

• Recursive best first search

• Objective: Linear space

• Idea: Remember best alternative
• Rewind, try alternatives if “best first” path

gets too expensive
• Remember costs on the way back up

RBFS

alt = 12

alt = 11

alt = 9

alt = 13

alt = 14

alt = 16

alt = 15

h=3

Return to best alternate.

Assume h=1,
initially along
this path.

Replace
with alt = 11

2

SMA*
• Idea: Use all of available memory

• Discard the worst leaf when memory starts to
run out, to make room for new leaves

• Values get backed up to parents

• Optimal if solution fits in memory

• Complete

• Thrashing still possible
h=1 h=1

h=3 h=4

Replace
with h=3
if we remove
this node

Expand

Optimization

• Solution is more important than path

• Interested in minimizing or maximizing
some function of the problem state
– Find TSP tour with minimum cost

– Optimize circuit layout
– Schedule tasks as tightly as possible

• History of visits not worth the trouble

State Space Landscape

Problem feature

Pro
bl

em
 fe

at
ur

e

Objective
function
value

Local Changes

Goal: Find values of problem features
that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

• Idea: Try to climb up the state space
landscape to find a setting of the problem
features with high value.

• Approaches:
– Steepest ascent
– Stochastic – pick one of the good ones

– First choice

• This is a greedy procedure

Limitations of Hill Climbing Getting Unstuck

• Random restarts

• Simulated annealing
– Take downhill moves with small probability

– Probability of moving downhill decreases with
• Number of iterations
• Steepness of downhill move

– If system is “cooled” slowly enough, will find global
optimal w.p. 1

– Motivated by the annealing of metals and glass
• settle into low energy configuration

3

Genetic Algorithms

• GAs are hot in some circles
• Biological metaphors to motivate search

• Organism is a word from a finite alphabet
(organisms = states)

• Fitness of organism measures its performance on
task (fitness = objective)

• Uses multiple organisms (parallel search)

• Uses mutation (random steps)

Crossover
Crossover is a distinguishing feature of GAs:

Randomly select organisms for “reproduction” in accordance
with their fitness. More “fit” individuals are more likely to
reproduce.

Reproduction involves crossover:

Organism 1: 1 1 0 0 1 0 0 1 0

Organism 2: 0 0 0 1 0 1 1 1 0

Offspring: 1 1 0 0 1 1 1 1 0

Is this a good idea?

• Has worked well in some examples
• Can be very brittle

– Representations must be carefully engineered

– Sensitive to mutation rate

– Sensitive to details of crossover mechanism

• For the same amount of work stochastic
variants of hill climbing often do better

• Hard to analyze; needs more rigorous study

Continuous Spaces
• In continuous spaces, we don’t need to “probe” to

find the values of local changes

• If we have a closed-form expression for our
objective function, we can use the calculus

• Suppose objective function is:

• Gradient tells us direction and steepness of change

),,,,,(332211 yxyxyxf

),,,,,(
332211 y

f

x

f

y

f

x

f

y

f

x

f
f

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂=∇

Following the Gradient

),,,,,(332211 yxyxyx=x

)(xxx f∇+← α

For sufficiently small step sizes, this will converge to
a region around a local optimum.

If gradient is hard to compute:
• Compute empirical gradient
• Compare with classical hill climbing

x

Accelerating Gradient Ascent

• Many methods for choosing step size

• Newton Raphson method for finding roots:

• Application to gradient ascent:

)('/)(xgxgxx −←

)()(1 xxxx −∇−← fHf

4

What’s a Hessian?

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

∂
∂

∂∂
∂

∂∂
∂

∂
∂

=

nn

n

f

x

f

xx

f

xx

f

x

f

H

2

2

1

2

1

2

1
2

2

�

���

	

Constrained Optimization

• Don’t forget about the easier cases
– If the objective function is linear, things are easier

– If linear constraints, solve as a linear program:

– Maximize:

– Subject to:

– Can be done in polynomial time

– Can solve some quadratic programs in poly time

)(xf

bAx ≤

Searching with Partial Information

• Multiple state problems
– Several possible initial states

• Contingency problems
– Several possible outcomes for each action

• Exploration problems
– Outcomes of actions not known a priori,

must be discovered by trying them

Example

• In some situations, initial state may not be
detectable
– Suppose sensors for a nuclear reactor fail

– Need safe shutdown sequence despite
ignorance of some aspects of state

• This complicates search enormously

• In the worst case, contingent solution could
cover the entire state space

State Sets

• Idea:
– Maintain a set of candidate states

– Each search node represents a set of states
– Can be hard to manage if state sets get large

Searching in Unknown Environments

• What if we don’t know the consequences of
actions before we try them?

• Often called on-line search

• Goal: Minimize competitive ratio
– Actual distance/distance traveled if model known

– Problematic if actions are irreversible

– Problematic if links can have unbounded cost

5

Conclusions

• There are search algorithms for almost every situation

• Many problems can be formulated as search

• While search is a very general method, it can sometimes
outperform special-purpose methods

