Outline of implementation

- **RSA algorithm for key generation**
 - select two prime numbers \(p, q \)
 - compute \(n = p \times q \)
 - \(v = (p-1) \times (q-1) \)
 - select small odd integer \(k \) such that \(\gcd(k, v) = 1 \)
 - compute \(d \) such that \((d \times k) \mod v = 1 \)

- **RSA algorithm for encryption/decryption**
 - encryption: compute \(E(M) = (M^k) \mod n \)
 - decryption: compute \(D(M) = (E(M)^d) \mod n \)

RSA algorithm for key generation

- **Input:** none

- **Computation:**
 - select two prime integers \(p, q \)
 - compute integers \(n = p \times q \)
 - \(v = (p-1) \times (q-1) \)
 - select small odd integer \(k \) such that \(\gcd(k, v) = 1 \)
 - compute integer \(d \) such that \((d \times k) \mod v = 1 \)

- **Output:** \(n, k, \) and \(d \)

RSA algorithm for encryption

- **Input:** integers \(k, n, M \)
 - \(M \) is integer representation of plaintext message

- **Computation:**
 - let \(C \) be integer representation of ciphertext
 \(C = (M^k) \mod n \)

- **Output:** integer \(C \)
 - ciphertext or encrypted message

RSA algorithm for decryption

- **Input:** integers \(d, n, C \)
 - \(C \) is integer representation of ciphertext message

- **Computation:**
 - let \(D \) be integer representation of decrypted ciphertext
 \(D = (C^d) \mod n \)

- **Output:** integer \(D \)
 - decrypted message
This seems hard ...

- How to find big primes?
- How to find mod inverse?
- How to compute greatest common divisor?
- How to translate text input to numeric values?
- Most importantly: RSA manipulates big numbers
 - Java integers are of limited size
 - how can we handle this?
- Two key items make the implementation easier
 - understanding the math
 - Java’s BigInteger class

What is a BigInteger?

- Java class to represent and perform operations on integers of arbitrary precision
- Provides analogues to Java’s primitive integer operations, e.g.
 - addition and subtraction
 - multiplication and division
- Along with operations for
 - modular arithmetic
 - gcd calculation
 - generation of primes
- http://java.sun.com/j2se/1.5.0/docs/api/

Using BigInteger

- If we understand what mathematical computations are involved in the RSA algorithm, we can use Java’s BigInteger methods to perform them
- To declare a BigInteger named B
  ```java
  BigInteger B;
  ```
- Predefined constants
  ```java
  BigInteger.ZERO
  BigInteger.ONE
  ```

Randomly generated primes

```java
BigInteger probablePrime(int b, Random rng)
```

- Returns random positive BigInteger of bit length b that is “probably” prime
 - probability that BigInteger is not prime < 2^{-100}
- Random is Java’s class for random number generation
- The following statement
  ```java
  Random rng = new Random();
  ```
 creates a new random number generator named rng
- What about randomized algorithms in general?
probablePrime

- Example: randomly generate two BigInteger primes named \(p \) and \(q \) of bit length 32:

```java
/* create a random number generator */
Random rng = new Random();

/* declare p and q as type BigInteger */
BigInteger p, q;

/* assign values to p and q as required */
p = BigInteger.probablePrime(32, rng);
q = BigInteger.probablePrime(32, rng);
```

Integer operations

- Suppose have declared and assigned values for \(p \) and \(q \) and now want to perform integer operations on them
 - use methods add, subtract, multiply, divide
 - result of BigInteger operations is a BigInteger

```
Examples:
BigInteger w = p.add(q);
BigInteger x = p.subtract(q);
BigInteger y = p.multiply(q);
BigInteger z = p.divide(q);
```

Greatest common divisor

- The greatest common divisor of two numbers \(x \) and \(y \) is the largest number that divides both \(x \) and \(y \)
 - this is usually written as \(\gcd(x,y) \)
- Example: \(\gcd(20,30) = 10 \)
 - 20 is divided by 1,2,4,5,10,20
 - 30 is divided by 1,2,3,5,6,10,15,30
- Example: \(\gcd(13,15) = 1 \)
 - 13 is divided by 1,13
 - 15 is divided by 1,3,5,15
- When the gcd of two numbers is one, these numbers are said to be relatively prime

Euler’s Phi Function

- For a positive integer \(n \), \(\phi(n) \) is the number of positive integers less than \(n \) and relatively prime to \(n \)
- Examples:
 - \(\phi(3) = 2 \quad 1,2 \) (but 2 is not relatively prime to 4)
 - \(\phi(4) = 2 \quad 1,2,3 \) (but 2 is not relatively prime to 4)
 - \(\phi(5) = 4 \quad 1,2,3,4 \)
- For any prime number \(p \),
 \[\phi(p) = p-1 \]
- For any integer \(n \) that is the product of two distinct primes \(p \) and \(q \),
 \[\phi(n) = \phi(p)\phi(q) = (p-1)(q-1) \]
Relative primes

- Suppose we have an integer x and want to find an odd integer z such that
 - $1 < z < x$, and
 - z is relatively prime to x
- We know that x and z are relatively prime if their greatest common divisor is one
 - Randomly generate prime values for z until $\gcd(x,z)=1$
 - If x is a product of distinct primes, there is a value of z satisfying this equality

Relative BigInteger primes

- Suppose we have declared a BigInteger x and assigned it a value
- Declare a BigInteger z
- Assign a prime value to z using the `probablePrime` method
 - Specifying an input bit length smaller than that of x gives a value $z<x$
- The expression $(x\gcd(z)).equals(BigInteger.ONE)$ returns true if $\gcd(x,z)=1$ and false otherwise
- While the above expression evaluates to false, assign a new random to z

Multiplicative identities and inverses

- The multiplicative identity is the element e such that $e \times x = x \times e = x$ for all elements $x \in \mathbb{X}$
- The multiplicative inverse of x is the element x^{-1} such that $x \times x^{-1} = x^{-1} \times x = 1$
- The multiplicative inverse of x mod n is the element x^{-1} such that $(x \times x^{-1}) \mod n = (x^{-1} \times x) \mod n = 1$
 - x and x^{-1} are inverses only in multiplication mod n

modInverse

- Suppose we have declared BigInteger variables x, y and assigned values to them
- We want to find a BigInteger z such that $(x*z) \% y = (z*x) \% y = 1$
 - That is, we want to find the inverse of x mod y and assign its value to z
- This is accomplished by the following statement:

  ```java
  BigInteger z = x.modInverse(y);
  ```