On the Limits of Computing

- Reasons for Failure
 1. Runs too long
 - Real time requirements
 - Predicting yesterday's weather
 2. Non-computable!
 3. Don't know the algorithm
- Complexity, N
 - Time
 - Space
- Tractable and Intractable

Intractable Algorithms
- Computer "crawls" or seems to come to halt for large N
- Large problems essentially unsolved
- May never be able to compute answer for some obvious questions
- Chess
 - Here N is number of moves looked ahead
 - We have an Algorithm!
 - Layers of look-ahead: If I do this, then he does this,
 - Problem Solved (?!)
- Can Represent Possibilities by a Tree
- Assume 10 Possibilities Each Move
 - \(t = A \times 10^N \)
- Exponential - - - \(O(2^N) - - - ! ! ! \)

Exponential Algorithms
- Recognizing Exponential Growth
 - Things get BIG very rapidly
 - Numbers seem to EXPLODE
 - KEY: at each added step, work multiplies rather than adds
- Exponential == Intractable
- Traveling Salesperson Example
 - Visit N Cities in Optimal Order
 - Optimize for minimum:
 - Time
 - Distance
 - Cost
- N factorial (N!) Possibilities
- N! is (very) roughly \(N^N \)
 - Sterling's approximation: \(N! = \sqrt{2\pi N} \cdot (N/e)^N \)
- Typical of some very practical problems

Traveling Salesperson Examples
- 3 cities 2! = 2 possible routes (1 of interest)
 - abc
 - acb
- 4 cities 3! = 6 possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - adbc
 - adcb
- (Only half usually of interest because just reverse of another path)
Traveling Salesperson Examples

5 cities 4! = 24 possible routes (12 of interest)

- abcde
- abced
- abdce
- abdec
- abecd
- abedc
- acbde
- acbed
- acdbe
- acdeb
- acedb
- adbec
- adbec
- adceh
- adecb
- adehc
- adecb

Towers of Hanoi

\[t = 0.00549 \times 2^N \]

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>

What would a faster computer do for these numbers?

Intractable Algorithms

- Other Games
 - More hardware not the answer!
- Predicting Yesterday's Weather
- Actual Examples for Time Complexity

Existence of Noncomputable Functions

- Approach
 - Matching up Programs and Functions
 - E.g., assume 3 functions, only 2 programs
 - Without details, conclude one function has no program
- Have: Uncountable Infinity of Functions Mapping int to int
 - How can we show that is true?
 - Functions can be seen as columns in tables
 - Put all functions into a huge (infinite!) table
 - Show that even that cannot hold them all
 - Can you identify the functions in the following table?
Table of All Integer to Integer Functions

1 1 2 6 0 0 8 2 1 4 ..
2 4 4 7 0 1 8 4 1 7 ..
3 9 6 8 0 0 8 6 2 10 ..
4 16 8 9 1 1 8 16 3 13 ..
5 25 10 10 1 0 8 10 5 16 ..
6 36 12 11 1 1 8 36 8 19 ..
7 49 14 12 1 0 8 14 13 22 ..
8 64 16 13 1 1 8 64 21 25 ..
9 81 18 14 1 0 8 18 34 28 ..
..

A Function NOT in this (inclusive?) Table

1+1 1 2 6 0 0 8 2 1 4 ..
2 4+1 4 7 0 1 8 4 1 7 ..
3 9 6+1 8 0 0 8 6 2 10 ..
4 16 8 9+1 1 1 8 16 3 13 ..
5 25 10 10 1+1 0 8 10 5 16 ..
6 36 12 11 1+1 8 36 8 19 ..
7 49 14 12 1 0 8+1 14 13 22 ..
8 64 16 13 1 1 8 64+1 21 25 ..
9 81 18 14 1 0 8 18 34+128 ..
10 100 20 15 1 1 8 100 55 31+1 ..
..

Existence of Noncomputable Functions

- All Programs Can be Ordered (thus Countable)
 - By size, shortest program first
 - Just use alphabetical order
- Try to Draw Lines Between Functions and Programs
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There Must be Functions With NO Programs!
- Hard to come up with function that computer can't run
 - Possible example: true random number generator
 - (No algorithm can produce a truly random number sequence: why?)
 - Use Table
 - Program must be of finite size; Requires infinite table

Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an if statement in the program: answers YES or NO
 - How about, \textit{Does program halt}?
 - Lack of while (and functions) guarantees a halt
 - Not very sophisticated
 - \textit{Not Halting for All Possible Inputs} is usually considered a Bug
- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...
The Halting Problem: Does it Halt?

- Consider Following Program: Does it halt for all input?
  ```java
  // input an integer value for k
  while (k > 1) {
    if ((k/2)*2 == k) / /is k even?
      k = k / 2;
    else
      k = 3 * k + 1;
  }
  ```

- Try It! Successive states of k:
 - e.g. 17: 52 26 13, 40 20 10 5, 16 8 4 2 1
 - For a long time, no one knew whether this terminated for all inputs.

Does it Halt?

- For any one specific program
 - Could coble together a list of tests that might satisfactorily answer that question
 - Imagine checking for loops; seeing if they are OK
 - What about recursion?
- As shown by previous example, even specific, simple programs can be hard to check

Proving Noncomputability

- Mathematicians have proven that no one, finite program can check this property for all possible programs
- Examples of non-computable problems
 - Equivalence: Define by same input > same output
 - Use variation of above program; not sure it ends
 - Cannot generally prove equivalence
- Use Proof by Contradiction (Indirect Proof)
- Proving non-computability
 - Sketch of proof

Noncomputability Proof

- Assume Existence of Function halt:
  ```java
  String halt(String p, String x);
  ```
 - Inputs: p = program, x = input data
 - Returns: "Halts" or "Does not halt"
- Can now write:
  ```java
  String selfHalt(String p);
  ```
 - Inputs: p = program
 - Returns: "Halts on self" or "Does not halt on self"
 - Uses: halt(p, p);
 - i.e.: asking if halts when program p uses itself as data
Noncomputability Proof.2

- Now write method contrary:
  ```java
  void contrary()
  {
      TextField program = new TextField(1000);
      String p, answer;
      p = program.getText();
      answer = selfHalt(p);
      if (answer.equals("Halts on self"))
      {
          while (true) // infinite loop
          answer = "x";
      } else
      return; // i.e., halts
  }
  "Feed it" this program.
  ```

Noncomputability Proof.3

- Paradox!
 - If `halt` program decides it halts, it goes into infinite loop and goes on forever
 - If `halt` program decides it doesn't halt, it quits immediately
- Therefore `halt` cannot exist!

- Whole classes of programs dealing with program behavior are non-computable
 - Equivalence
 - Many other programs that deal with the behavior of a program

Living with Noncomputability

- What Does It All Mean?
 - Not necessarily a very tough constraint unless you get "too greedy".
 - Programs can't do everything.
 - Beware of people who say they can!
 - (and now you should know better)