Analyzing Algorithms

- Consider three solutions to SortByFreqs, also code used in old Anagram assignment
 - Sort, then scan looking for changes
 - Insert into Set, then count each unique string
 - Find unique elements without sorting, sort these, then count each unique string

- We want to discuss trade-offs of these solutions
 - Ease to develop, debug, verify
 - Runtime efficiency
 - Vocabulary for discussion
Cost

“An engineer is someone who can do for a dime what any fool can do for a dollar.”

- **Types of costs:**
 - Operational
 - Development
 - Failure

- **Is this program fast enough? What’s your purpose? What’s your input data?**

- **How will it scale?**

- **Measuring cost**
 - Wall-clock or execution time
 - Number of times certain statements are executed
 - Symbolic execution times
 - Formula for execution time in terms of *input size*
 - Advantages and disadvantages?

Some complexity notes courtesy of Paul Hilfinger
Data processing example

- Scan a large (~ 10^7 bytes) file
- Print the 20 most frequently used words together with counts of how often they occur
- Need more specification?

- How do you do it?
Dropping Glass Balls

- Tower with N Floors
- Given 2 glass balls
- Want to determine the *lowest* floor from which a ball can be dropped and will break
- How?

- What is the most efficient algorithm?
- How many drops will it take for such an algorithm (as a function of N)?
Glass balls revisited (more balls)

- Assume the number of floors is 100
- In the best case how many balls will I have to drop to determine the lowest floor where a ball will break?
 1. 1
 2. 2
 3. 10
 4. 16
 5. 17
 6. 18
 7. 20
 8. 21
 9. 51
 10. 100

- In the worst case, how many balls will I have to drop?
 1. 1
 2. 2
 3. 10
 4. 16
 5. 17
 6. 18
 7. 20
 8. 21
 9. 51
 10. 100

If there are n floors, how many balls will you have to drop? (roughly)
What is big-Oh about? (preview)

- Intuition: avoid details when they don’t matter, and they don’t matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients

\[
\begin{align*}
y &= 3x & y &= 6x-2 & y &= 15x + 44 \\
y &= x^2 & y &= x^2-6x+9 & y &= 3x^2+4x
\end{align*}
\]

- The first family is \(O(n) \), the second is \(O(n^2) \)
 - Intuition: family of curves, generally the same shape
 - More formally: \(O(f(n)) \) is an upper-bound, when \(n \) is large enough the expression \(cf(n) \) is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time
More on O-notation, big-Oh

- Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms in the limit
 - 20N hours vs N² microseconds: which is better?

- O-notation is an upper-bound, this means that N is \(O(N) \), but it is also \(O(N^2) \); we try to provide tight bounds. Formally:
 - A function \(g(N) \) is \(O(f(N)) \) if there exist constants \(c \) and \(n \) such that \(g(N) < cf(N) \) for all \(N > n \)
Big-Oh calculations from code

- **Search for element in an array:**
 - What is complexity of code (using O-notation)?
 - What if array doubles, what happens to time?

```java
for(int k=0; k < a.length; k++) {
    if (a[k].equals(target)) return true;
}
return false;
```

- **Complexity if we call N times on M-element vector?**
 - What about best case? Average case? Worst case?
Big-Oh calculations again

- Alcohol APT: first string to occur 3 times
 - What is complexity of code (using O-notation)?

```java
for(int k=0; k < a.length; k++) {
    int count = 0;
    for(int j=0; j <= k; j++) {
        if (a[j].equals(a[k])) count++;
    }
    if (count >= 3) return a[k];
}
return ""; // nothing occurs three times
```

- What happens to time if array doubles in size?
 - $1 + 2 + 3 + \ldots + n-1$, why and what’s O-notation?
Amortization: *Expanding ArrayLists*

- Expand capacity of list when `add()` called
- Calling `add` N times, doubling capacity as needed

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing Cost</th>
<th>Cumulative cost</th>
<th>Resizing Cost per item</th>
<th>Capacity After add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5-8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2^{m+1}-2^{m+1}</td>
<td>2^{m+1}</td>
<td>2^{m+2}-2^{m+1}</td>
<td>around 2</td>
<td>2^{m+1}</td>
</tr>
</tbody>
</table>

- What if we grow size by one each time?
Some helpful mathematics

- $1 + 2 + 3 + 4 + \ldots + N$
 - $N(N+1)/2$, exactly $= N^2/2 + N/2$ which is $O(N^2)$ why?

- $N + N + N + \ldots + N$ (total of N times)
 - $N*N = N^2$ which is $O(N^2)$

- $N + N + N + \ldots + N + \ldots + N + \ldots + N$ (total of 3N times)
 - $3N*N = 3N^2$ which is $O(N^2)$

- $1 + 2 + 4 + \ldots + 2^N$
 - $2^{N+1} - 1 = 2 \times 2^N - 1$ which is $O(2^N)$

- Impact of last statement on adding 2^N+1 elements to a vector
 - $1 + 2 + \ldots + 2^N + 2^{N+1} = 2^{N+2} - 1 = 4 \times 2^N - 1$ which is $O(2^N)$
Running times @ 10^6 instructions/sec

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.0000003</td>
<td>0.00001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.00010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.00100</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.01000</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.10000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>
Recursion Review

- **Recursive functions have two key attributes**
 - There is a *base case*, sometimes called the *exit* or *halting case*, which does **not** make a recursive call
 - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
 - Ensure that every sequence of calls reaches base case
 - Some measure decreases/moves towards base case
 - “Measure” can be tricky, but usually it’s straightforward

- **Example: sequential search in an array**
 - If first element is search key, done and return
 - Otherwise look in the “rest of the array”
 - How can we recurse on “rest of array”?
Sequential search revisited

- What does the code below do? How would it be called initially?
 - Another overloaded function `search` with 2 parameters?

```java
boolean search(String[] a, int index, String target) {
    if (index >= a.length)
        return false;
    else if (a[index].equals(target))
        return true;
    else
        return search(a, index+1, target);
}
```

- What is complexity (big-Oh) of this function?
Recursion and Recurrences

boolean occurs(String s, String x)
{
 // post: returns true iff x is a substring of s
 if (s.equals(x)) return true;
 if (s.length() <= x.length()) return false;
 return occurs(s.substring(1, s.length()), x) ||
 occurs(s.substring(0, s.length()-1), x);
}

- In worst case, both calls happen
- Say $C(N)$ is the worst case cost of $\text{occurs}(s, x), N == s\.\text{length}()$
 - $C(N) = 1$ if $N < x\.\text{length}()$
 - $C(N) = 2C(N-1)$ if $N > x\.\text{length}()$
- What is $C(N)$?
Binary search revisited

```java
bool bsearch(String[] a, int start, int end, String target)
{
    // base case
    if (start == end)
        return a[start].equals(target);

    int mid = (start + end)/2;
    int comp = a[mid].compareTo(target);
    if (comp == 0) // found target
        return true;
    else if (comp < 0) // target on right
        return bsearch(a, mid +1, end);
    else // target on left
        return bsearch(a, start, mid - 1);
}

What is the big-Oh of bsearch?
Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
  *scientists build to learn, engineers learn to build*

- Mathematics is a notation that helps in thinking, discussion, programming
The Power of Recursion: Brute force

- Consider the TypingJob APT problem: What is minimum number of minutes needed to type n term papers given page counts and three typists typing one page/minute? (assign papers to typists to minimize minutes to completion)
  - Example: \{3, 3, 3, 5, 9, 10, 10\} as page counts

- How can we solve this in general? Suppose we're told that there are no more than 10 papers on a given day.
  - How does the constraint help us?
  - What is complexity of using brute-force?
Recasting the problem

- Instead of writing this function, write another and call it

```c
/** @return min minutes to type papers in pages */
int bestTime(int[] pages)
{
 return best(pages, 0, 0, 0, 0);
}
```

- What cases do we consider in function below?

```c
int best(int[] pages, int index,
 int t1, int t2, int t3)
// returns min minutes to type papers in pages
// starting with index-th paper and given
// minutes assigned to typists, t1, t2, t3
{
}
```