On the Limits of Computing

✓ Reasons for Failure
 1. Runs *too long*
 - Real time requirements
 - Predicting yesterday's weather
 2. Non-computable!
 3. Don't know the algorithm

✓ Complexity, N
 - Time
 - Space

✓ Tractable and Intractable
On the Limits of Computing

- **Intractable Algorithms**
 - Computer "crawls" or seems to come to halt for large N
 - Large problems *essentially unsolved*
 - May never be able to compute answer for some obvious questions

- **Chess**
 - Here N is number of moves looked ahead
 - *We have* an Algorithm!
 - Layers of look-ahead: If I do this, then he does this,
 - Problem Solved (?!)
 - Can Represent Possibilities by a Tree
 - Assume 10 Possibilities Each Move
 - $t = A \times 10^N$

- **Exponential** - - - $O(2^N)$ - - - ! ! !
Exponential Algorithms

- **Recognizing Exponential Growth**
 - Things get **BIG** very rapidly
 - Numbers seem to **EXPLODE**
 - **KEY**: at each *added* step, work *multiplies* rather than *adds*

- **Exponential == Intractable**

- **Traveling Salesperson Example**
 - Visit N Cities in *Optimal* Order
 - Optimize for minimum:
 - Time
 - Distance
 - Cost

- **N factorial (N!) Possibilities**

- **N! is (very) roughly** \(N^N \)
 - Sterling’s approximation: \(N! = \sqrt{2\pi N} (N/e)^N \)

- **Typical of some very practical problems**
Traveling Salesperson Examples

- 3 cities 2! = 2 possible routes (1 of interest)
 - abc
 -acb

- 4 cities 3! = 6 possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - acdb
 - adbc
 - adcb

- (Only half usually of interest because just reverse of another path)
Traveling Salesperson Examples

5 cities 4! = 24 possible routes

- abcde
- abced
- abdce
- abdec
- abecd
- abedc
- acbde
- acbed
- acdbe
- acdeb
- acebd
- acedeb

(12 of interest)

- adbce
- adbec
- adcbe
- adecb
- adceb
- adebc
- adecb
- aebcd
- aebdc
- aecbd
- aecdb
- aedbd
- aedcb
Towers of Hanoi

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>

\[
t = 0.00549 \times 2^N
\]

(for a very old PC)

What would a faster computer do for these numbers?
Intractable Algorithms

- Other Games

- More hardware not the answer!

- Predicting Yesterday's Weather

- Actual Examples for Time Complexity
Existence of Noncomputable Functions

- **Approach**
 - Matching up Programs and Functions
 - E.g., assume 3 functions, only 2 programs
 - Without details, conclude one function has no program

- **Have:** *Uncountable Infinity of Functions Mapping int to int*
 - How can we show that is true?
 - Functions can be seen as columns in tables
 - Put all functions into a huge (*infinite!*) table
 - Show that even that cannot hold them all
 - *Can you identify the functions in the following table?*
Table of *All* Integer to Integer Functions

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>.</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>13</td>
<td>22</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64</td>
<td>21</td>
<td>25</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34</td>
<td>28</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

....

....
A Function \textit{NOT} in this (inclusive?) Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>6</th>
<th>0</th>
<th>0</th>
<th>8</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>.</th>
<th>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>4+1</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6+1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9+1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>16</td>
<td>3</td>
<td>13</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1+1</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>16</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1+1</td>
<td>8</td>
<td>36</td>
<td>8</td>
<td>19</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8+114</td>
<td>13</td>
<td>22</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>64+121</td>
<td>25</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>18</td>
<td>34+128</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>100</td>
<td>55</td>
<td>31+1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

CompSci 100
17.10
Existance of Noncomputable Functions

- All Programs Can be Ordered (thus *Countable*)
 - By size, shortest program first
 - Just use alphabetical order

- Try to Draw Lines Between Functions and Programs
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There **Must be** Functions With NO Programs!

- Hard to come up with function that computer can't run
 - Possible example: *true* random number generator
 - (No algorithm can produce a truly random number sequence: why?)
 - Use Table
 - Program must be of finite size; Requires infinite table
Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an `if` statement in the program: answers YES or NO
 - How about, *Does program halt?*
 - Lack of `while` (and functions) guarantees a halt
 - Not very sophisticated
 - *Not Halting for All Possible Inputs* is usually considered a Bug

- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...
The Halting Problem: Does it Halt?

- Consider Following Program: Does it halt for all input?

```c
// input an integer value for k
while (k > 1)
{
    if ((k/2) * 2 == k) // is k even?
        k = k / 2;
    else
        k = 3 * k + 1;
}
```

- Try It! Successive states of k:
 - e.g. 17: 52 26 13, 40 20 10 5, 16 8 4 2 1
 - For a long time, no one knew whether this terminated for all inputs.
Does it Halt?

- For any one specific program
 - Could coble together a list of tests that might satisfactorily answer that question
 - Imagine checking for loops; seeing if they are OK
 - What about recursion?
- As shown by previous example, even specific, simple programs can be hard to check
Proving Noncomputability

- Mathematicians have proven that no one, finite program can check this property for all possible programs
- Examples of non-computable problems
 - Equivalence: Define by *same input* > *same output*
 - Use variation of above program; not sure it ends
 - Cannot generally prove equivalence
- Use *Proof by Contradiction* (Indirect Proof)
- Proving non-computability
 - Sketch of proof
Noncomputability Proof

- Assume Existence of Function halt:

 $\text{String } \text{halt}(\text{String } p, \text{ String } x);$
 - Inputs: $p = \text{program, } x = \text{input data}$
 - Returns: "Halts"
 - or "Does not halt"

- Can now write:

 $\text{String selfHalt(String } p);$
 - Inputs: $p = \text{program}$
 - Returns: "Halts on self"
 - or "Does not halt on self"
 - Uses: $\text{halt}(p, p);$
 - i.e.: asking if halts when program p uses $itself$ as data
Noncomputability Proof.2

Now write method **contrary**:

```java
void contrary()
{
    TextField program = new TextField(1000);
    String p, answer;
    p = program.getText();
    answer = selfHalt(p);
    if (answer.equals("Halts on self"))
    {
        while (true)    // infinite loop
            answer = "x";
    }
    else
        return;    // i.e., halts
}

"Feed it" **this** program.
Noncomputability Proof.3

❖ Paradox!
   ❖ If \texttt{halt} program decides it \textit{halts}, it goes into infinite loop and \textit{goes on forever}.
   ❖ If \texttt{halt} program decides it doesn't halt, it \textit{quits} immediately.

❖ Therefore \texttt{halt} cannot exist!

❖ Whole classes of programs dealing with \textit{program behavior} are non-computable
   ❖ Equivalence
   ❖ Many other programs that deal with the \textit{behavior} of a program.
Living with Noncomputability

- **What Does It All Mean?**
  - Not necessarily a very tough constraint unless you get “too greedy”.
  - Programs can't do everything.
    - Beware of people who say they can!
    - (and *now* you should know better)