Another Look at Binary Search

- Magic!
 - Has been used as the basis for “magical” tricks

- Find telephone number (without computer) in seconds
 - If that isn’t magic, what is?

- There are less than 10^{80} atoms in the universe.
 - If ordered, how long to locate a particular one?

- Demo!

- What is the big-Oh?

Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - It’s faster! It’s more elegant! It’s safer! It’s cooler!

- We need empirical tests and analytical/mathematical tools
 - Given two methods, which is better? Run them to check.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - What if it takes two weeks to implement the methods?

- Use mathematics to analyze the algorithm,
- The implementation is another matter, cache, compiler optimizations, OS, memory,…

Recursion and recurrences

- Why are some functions written recursively?
 - Simpler to understand, but …
 - Mt. Everest reasons

- Are there reasons to prefer iteration?
 - Better optimizer: programmer/scientist v. compiler
 - Six of one? Or serious differences
 - “One person’s meat is another person’s poison”
 - “To each his own”, “Chacun a son gout”, …

- Complexity (big-Oh) for iterative and recursive functions
 - How to determine, estimate, intuit

What’s the complexity of this code?

```java
// first and last are integer indexes, list is List
int lastIndex = first;
Object pivot = list.get(first);
for(int k=first+1; k <= last; k++){
    Comparable ko = (Comparable) list.get(k);
    if (ko.compareTo(pivot) <= 0){
        lastIndex++; Collections.swap(list,lastIndex,k);
    }
}
```

- What is big-Oh cost of a loop that visits n elements of a vector?
 - Depends on loop body, if body $O(1)$ then …
 - If body is $O(n)$ then …
 - If body is $O(k)$ for k in $[0..n)$ then …
FastFinder.findHelper

```java
private Object findHelper(ArrayList list, int first, int last, int kindex)
{
    int lastIndex = first;
    Object pivot = list.get(first);
    for (int k = first + 1; k <= last; k++) {
        Comparable ko = (Comparable) list.get(k);
        if (ko.compareTo(pivot) <= 0) {
            lastIndex++;
            Collections.swap(list, lastIndex, k);
        }
    }
    Collections.swap(list, lastIndex, first);
    if (lastIndex == kindex) return list.get(lastIndex);
    if (kindex < lastIndex)
        return findHelper(list, first, lastIndex - 1, kindex);
    return findHelper(list, lastIndex + 1, last, kindex);
}
```

Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?

Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?

- What is the number of elements in the list (1,2,2,3,3,3)?
 - What about (1,2,2, ..., n,n,...,n)?
 - How can we reason about this?

Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is log(1024)?
 - $\log(xy) = \log(x) + \log(y)$
 - $\log(2^n) = n$
 - $e^{\log(n)} = n$

- Sums (also, use sigma notation when possible)
 - $1 + 2 + 4 + 8 + ... + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i$
 - $1 + 2 + 3 + ... + n = n(n+1)/2 = \sum_{i=1}^{n} i$
 - $a + ar + ar^2 + ... + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i$
Recursion Review

- Recursive functions have two key attributes
 - There is a base case, sometimes called the exit case, which does not make a recursive call
 - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
 - Ensure that every sequence of calls reaches base case
 - Some measure decreases/moves towards base case
 - “Measure” can be tricky, but usually it’s straightforward

- Example: sequential search in an ArrayList
 - If first element is search key, done and return
 - Otherwise look in the “rest of the list”
 - How can we recur on “rest of list”?

Sequential search revisited

- What is complexity of sequential search? Of code below?
  ```java
  boolean search(ArrayList list, int first, Object target) {
      if (first >= list.size()) return false;
      else if (list.get(first).equals(target))
          return true;
      else return search(list, first+1, target);
  }
  ```
 Why are there three parameters? Same name good idea?

  ```java
  boolean search(ArrayList list, Object target){
      return search(list, 0, target);
  }
  ```

Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
 scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming

Recurrences

- Summing Numbers
  ```java
  int sum(int n)
  {
      if (0 == n) return 0;
      else return n + sum(n-1);
  }
  ```
 What is complexity? justification?
 - T(n) = time to compute sum for n
 - T(n) = T(n-1) + 1
 - T(0) = 1
 - instead of 1, use O(1) for constant time
 - independent of n, the measure of problem size
Solving recurrence relations

- plug, simplify, reduce, guess, verify?

 \[T(n) = T(n-1) + 1 \]
 \[T(0) = 1 \]
 \[T(n-1) = T(n-1-1) + 1 \]
 \[T(n) = [T(n-2) + 1] + 1 = T(n-2)+2 \]
 \[T(n-2) = T(n-2-1) + 1 \]
 \[T(n) = [(T(n-3) + 1) + 1] + 1 = T(n-3)+3 \]
 \[T(n) = T(n-k) + k \] find the pattern!

Now, let \(k=n \), then \(T(n) = T(0)+n = 1+n \)

- get to base case, solve the recurrence: \(O(n) \)

Complexity Practice

- What is complexity of Build? (what does it do?)

  ```java
  ArrayList build(int n)
  {
     if (0 == n) return new ArrayList(); // empty
     ArrayList list = build(n-1);
     for(int k=0; k < n; k++)
     {
       list.add(new Integer(n));
     }
     return list;
  }
  ```

- Write an expression for \(T(n) \) and for \(T(0) \), solve.

Recognizing Recurrences

- Solve once, re-use in new contexts

 - \(T \) must be explicitly identified
 - \(n \) must be some measure of size of input/parameter
 - \(T(n) \) is the time for quicksort to run on an \(n \)-element vector

 \[T(n) = T(n/2) + O(1) \] binary search \(O(\log n) \)
 \[T(n) = T(n-1) + O(1) \] sequential search \(O(n) \)
 \[T(n) = 2T(n/2) + O(1) \] tree traversal \(O(n) \)
 \[T(n) = 2T(n/2) + O(n) \] quicksort \(O(n \log n) \)
 \[T(n) = T(n-1) + O(n) \] selection sort \(O(n^2) \)

- Remember the algorithm, re-derive complexity