Big Oh Again Again

- Have taken the attitude that mostly you can look things up
- Now need to be able to *do your own derivations*
- *Extend* our menu of solutions to common recurrences
- Let’s look at previously shown table

Recognizing Common Recurrences

- Below are some algorithms and recurrence relation encountered
- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - $T(n)$ is the time for quicksort to run on an n-element vector

\[
\begin{align*}
T(n) &= T(n/2) + O(1) & \text{binary search} & \mathcal{O}(\log n) \\
T(n) &= T(n-1) + O(1) & \text{sequential search} & \mathcal{O}(n) \\
T(n) &= 2T(n/2) + O(1) & \text{tree traversal} & \mathcal{O}(n) \\
T(n) &= 2T(n/2) + O(n) & \text{quicksort} & \mathcal{O}(n \log n) \\
T(n) &= T(n-1) + O(n) & \text{selection sort} & \mathcal{O}(n^2)
\end{align*}
\]

- Remember the algorithm, re-derive complexity

Big Oh for Quickselect

- Quickselect finds the Nth Smallest item in a list
 - For example
 - \{ 13, 14, 11, 17, 15, 19, 12, 16, 18, 17\}
 - 4th smallest is 14. Program partially sorts so that it ends up in the 4th index position (3).
- Code on next slide
 - Has much in common with Quicksort
 - What are the differences?

- Recurrence Relation
 - $T(0) = 1$
 - $T(N) = T(N/2) + N$
- What is Big Oh?

Quickselect

- Partially reorders list so that k_{index} smallest is in proper position

```java
void quickselect(String[] list, int first, int last, int kIndex)
{
    int k, lastIndex = first;
    String pivot = list[first];
    for(k = first+1; k <= last; k++){
        if (list[k].compareTo(pivot) <= 0){
            lastIndex++;
            swap(list, lastIndex, k);
        }
    }
    swap(list,lastIndex,first);
    if (lastIndex == kIndex) return;
    if (kindex < lastIndex)
        quickselect(list,first,lastIndex-1,kindex);
    else
        quickselect(list,lastIndex+1,last,kindex);
}
```
Solving Quickselect Big Oh

- Plug, simplify, reduce, guess, verify?

\[
T(n) = T(n/2) + n
\]
\[
T(1) = 1
\]
\[
T(n) = T(n/4) + n/2 = T(n/2^k) + (2 - 1/2^k) n
\]

Now, let \(k = \log n \), then \(T(n) = T(0) + 2n = 1 + 2n \)

- Get to base case, solve the recurrence: \(O(n) \)

Helpful formulae

- We always mean base 2 unless otherwise stated
 - \(\log(1024) \)
 - \(\log(xy) = \log(x) + \log(y) \)
 - \(y \log(x) \)
 - \(n \log(2) = n \)
 - \(2^{(\log n)} = n \)

- Sums (also, use sigma notation when possible)
 - \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \)
 - \(1 + 2 + 3 + \ldots + n = n(n+1)/2 = \sum_{i=1}^{n} i \)
 - \(a + ar + ar^2 + \ldots + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i \)

Towers of Hanoi

// Initial state for n=3
//
// | A | B | C |
// | (_) 1 | | |
// | (_) 2 | | |
// | (_) 3 | | |

Sample output responding to hanoi("A", "C", "B", 3);

> Move disk 1 from A to C
> Move disk 2 from A to B
> Move disk 1 from C to B
> Move disk 3 from A to C
> Move disk 1 from B to A
> Move disk 2 from B to C
> Move disk 1 from A to C

Towers of Hanoi code

```java
void hanoi(String from, String to, String via, int n)
// Pre: n > 0 disks in pile "from" to be moved to pile "to"
// with pile "via" available for intermediate storage. All
// piles so that disk n always above disk n+k where k > 0.
// Post: Messages generated to show how to move disks to pile "to"
// with intermediate use of all piles but only one disk moved at
// a time and at all times for all n, disk n above disk n+k where
// k > 0. (I.e., at no time is a larger disk above a smaller disk
// where smaller disks have smaller numbers than larger disks.){
if (n == 1) // base case: only one disk in pile
    System.out.println("Move disk 1 from " + from + " to " + to + " to");
else {
    hanoi(from, via, to, n-1); // move disks above to alternate
    System.out.println("Move disk " + n + " from " + from + " to " + to);
    hanoi(via, to, from, n-1); // move disk above to target
}
```

```java
void hanoi(String from, String to, String via, int n)
```

```java
void hanoi(String from, String to, String via, int n)
```

```java
void hanoi(String from, String to, String via, int n)
```
Solving Towers of Hanoi Big Oh

Recurrence relation:

\[T(n) = 2T(n-1) + 1 \]
\[T(0) = 1 \]

find the pattern!

Now, let \(k = n \), then
\[T(n) = 2^nT(0) + 2^n - 1 = 2^{n+1} - 1 \]

Get to base case, solve the recurrence: \(O(2^n) \)

Oh – Oh!