Another Look at Binary Search

- **Magic!**
 - Has been used as the basis for “magical” tricks

- **Find telephone number** *(without computer)* **in seconds**
 - If that isn’t magic, what is?

- **There are less than** 10^{80} **atoms in the universe.**
 - If ordered, how long to locate a particular one?

- **Demo!**

- **What is the big-Oh?**
Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - It’s faster! It’s more elegant! It’s safer! It’s cooler!

- We need empirical tests and analytical/mathematical tools
 - Given two methods, which is better? Run them to check.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - What if it takes two weeks to implement the methods?
 - Use mathematics to analyze the algorithm,
 - The implementation is another matter, cache, compiler optimizations, OS, memory,...
Recursion and recurrences

- **Why are some functions written recursively?**
 - Simpler to understand, but …
 - Mt. Everest reasons

- **Are there reasons to prefer iteration?**
 - Better optimizer: programmer/scientist v. compiler
 - Six of one? Or serious differences
 - “One person’s meat is another person’s poison”
 - “To each his own”, “Chacun a son gout”, …

- **Complexity (big-Oh) for iterative and recursive functions**
 - How to determine, estimate, intuit
What’s the complexity of this code?

```
// first and last are integer indexes, list is List
int lastIndex = first;
Object pivot = list.get(first);
for(int k=first+1; k <= last; k++){
    Comparable ko = (Comparable) list.get(k);
    if (ko.compareTo(pivot) <= 0){
        lastIndex++;
        Collections.swap(list,lastIndex,k);
    }
}
```

- What is big-Oh cost of a loop that visits \(n \) elements of a vector?
 - Depends on loop body, if body \(\mathcal{O}(1) \) then …
 - If body is \(\mathcal{O}(n) \) then …
 - If body is \(\mathcal{O}(k) \) for \(k \) in \([0..n)\) then …
private Object findHelper(ArrayList list, int first, int last, int kindex) {
 int lastIndex = first;
 Object pivot = list.get(first);
 for (int k = first + 1; k <= last; k++) {
 Comparable ko = (Comparable) list.get(k);
 if (ko.compareTo(pivot) <= 0) {
 lastIndex++;
 Collections.swap(list, lastIndex, k);
 }
 }
 Collections.swap(list, lastIndex, first);
 if (lastIndex == kindex) return list.get(lastIndex);
 if (kindex < lastIndex) return findHelper(list, first, lastIndex - 1, kindex);
 return findHelper(list, lastIndex + 1, last, kindex);
}
Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?
Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?

- What is the number of elements in the list (1,2,2,3,3,3)?
 - What about (1,2,2, ..., n,n,...,n)?
 - How can we reason about this?
Helpful formulae

- **We always mean base 2 unless otherwise stated**
 - What is log(1024)?
 - $\log(xy) = \log(x) + \log(y)$
 - $\log(x^n) = n \log(x)$
 - $\log(2^n) = n$
 - $2^{(\log n)} = n$

- **Sums (also, use sigma notation when possible)**
 - $1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i$
 - $1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} = \sum_{i=1}^{n} i$
 - $a + ar + ar^2 + \ldots + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i$
Recursion Review

- **Recursive functions have two key attributes**
 - There is a *base case*, sometimes called the *exit case*, which does **not** make a recursive call
 - All other cases make recursive call(s), the results of these calls are used to return a value when necessary
 - Ensure that every sequence of calls reaches base case
 - Some measure decreases/moves towards base case
 - “Measure” can be tricky, but usually it’s straightforward

- **Example: sequential search in an ArrayList**
 - If first element is search key, done and return
 - Otherwise look in the “rest of the list”
 - How can we recurse on “rest of list”?
Sequential search revisited

- What is complexity of sequential search? Of code below?

```java
boolean search(ArrayList list, int first, Object target) {
    if (first >= list.size()) return false;
    else if (list.get(first).equals(target))
        return true;
    else return search(list, first+1, target);
}
```

- Why are there three parameters? Same name good idea?

```java
boolean search(ArrayList list, Object target){
    return search(list, 0, target);
}
```
Why we study recurrences/complexity?

- Tools to analyze algorithms
- *Machine-independent* measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?

 scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming
Recurrences

- **Summing Numbers**

```c
int sum(int n) {
    if (0 == n) return 0;
    else return n + sum(n-1);
}
```

- **What is complexity? justification?**
- **T(n) = time to compute sum for n**

\[
T(n) = T(n-1) + 1 \\
T(0) = 1
\]

- **instead of 1, use O(1) for constant time**
 - independent of n, the measure of problem size
Solving recurrence relations

- plug, simplify, reduce, guess, verify?

\[
\begin{align*}
T(n) &= T(n-1) + 1 \\
T(0) &= 1 \\
T(n-1) &= T(n-1-1) + 1 \\
T(n) &= [T(n-2) + 1] + 1 = T(n-2)+2 \\
T(n-2) &= T(n-2-1) + 1 \\
T(n) &= [(T(n-3) + 1) + 1] + 1 = T(n-3)+3
\end{align*}
\]

\[
T(n) = T(n-k) + k \quad \text{find the pattern!}
\]

Now, let \(k=n \), then \(T(n) = T(0)+n = 1+n \)

- get to base case, solve the recurrence: \(O(n) \)
What is complexity of $Build$? (what does it do?)

```java
ArrayList build(int n)
{
    if (0 == n) return new ArrayList(); // empty
    ArrayList list = build(n-1);
    for(int k=0;k < n; k++) {
        list.add(new Integer(n));
    }
    return list;
}
```

Write an expression for $T(n)$ and for $T(0)$, solve.
Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is the time for quicksort to run on an n-element vector

\[
\begin{align*}
T(n) &= T(n/2) + O(1) & \text{binary search} & \mathcal{O}(\log n) \\
T(n) &= T(n-1) + O(1) & \text{sequential search} & \mathcal{O}(n) \\
T(n) &= 2T(n/2) + O(1) & \text{tree traversal} & \mathcal{O}(n) \\
T(n) &= 2T(n/2) + O(n) & \text{quicksort} & \mathcal{O}(n \log n) \\
T(n) &= T(n-1) + O(n) & \text{selection sort} & \mathcal{O}(n^2)
\end{align*}
\]

- Remember the algorithm, re-derive complexity