Creating Heaps

- Heap is an array-based implementation of a binary tree used for implementing priority queues, supports:
 - insert, findmin, deletemin: complexities?

- Using array minimizes storage (no explicit pointers), faster too --- children are located by index/position in array

- Heap is a binary tree with shape property, heap/value property
 - shape: tree filled at all levels (except perhaps last) and filled left-to-right (complete binary tree)
 - each node has value smaller than both children
Array-based heap

- store “node values” in array beginning at index 1
- for node with index k
 - left child: index $2k$
 - right child: index $2k+1$

- why is this conducive for maintaining heap shape?
- what about heap property?
- is the heap a search tree?
- where is minimal node?
- where are nodes added? deleted?
Thinking about heaps

- Where is minimal element?
 - Root, why?

- Where is maximal element?
 - Leaves, why?

- How many leaves are there in an N-node heap (big-Oh)?
 - O(n), but exact?

- What is complexity of find max in a minheap? Why?
 - O(n), but \(\frac{1}{2} N \)?

- Where is second smallest element? Why?
 - Near root?
Adding values to heap

- to maintain heap shape, must add new value in left-to-right order of last level
 - could violate heap property
 - move value “up” if too small

- change places with parent if heap property violated
 - stop when parent is smaller
 - stop when root is reached

- pull parent down, swapping isn’t necessary (optimization)
Adding values, details (pseudocode)

void add(Object elt)
{
 // add elt to heap in myList
 myList[mySize] = elt;
 mySize++;
 int loc = mySize - 1;

 while (1 < loc &&
 elt < myList[loc/2])
 {
 myList[loc] = myList[loc/2];
 loc = loc/2; // go to parent
 }
 // what’s true here?

 myList[loc] = elt;
}
Removing minimal element

- Where is minimal element?
 - If we remove it, what changes, shape/property?
- How can we maintain shape?
 - “last” element moves to root
 - What property is violated?
- After moving last element, subtrees of root are heaps, why?
 - Move root down (pull child up) does it matter where?
- When can we stop “re-heaping”?
 - Less than both children
 - Reach a leaf