On the Limits of Computing

- **Reasons for Failure**
 1. **Runs too long**
 - Real time requirements
 - Predicting yesterday's weather
 2. Non-computable!
 3. Don't know the algorithm

- **Complexity, N**
 - Time
 - Space

- **Tractable and Intractable**
On the Limits of Computing

- **Intractable Algorithms**
 - Computer "crawls" or seems to come to halt for large N
 - Large problems *essentially unsolved*
 - May never be able to compute answer for some obvious questions

- **Chess**
 - Here N is number of moves looking ahead
 - *We have* an Algorithm!
 - Layers of look-ahead: If I do this, then he does this,
 - Problem Solved (?!)
 - Can Represent Possibilities by Tree
 - Assume 10 Possibilities Each Move
 - \(t = A \cdot 10^N \) or \(O(A^N) \)

- **Exponential !!!**
Exponential Algorithms

- **Recognizing Exponential Growth**
 - Things get **BIG** very rapidly
 - Numbers seem to **EXPLODE**
 - KEY: at each *added* step, work *multiplies* rather than *adds*

- Exponential = $O(A^N) = \text{Intractable}$

- **Traveling Salesperson Example**
 - Visit N Cities in *Optimal* Order
 - Optimize for minimum:
 - Time
 - Distance
 - Cost

- N factorial (N!) Possibilities

- N! is (very) roughly N^N
 - Sterling’s approximation: $N! = \sqrt{2\pi N} \cdot (N/e)^N$

- Typical of some very practical problems
Traveling Salesperson Examples

- 3 cities $2! = 2$ possible routes (1 of interest)
 - abc
 - acb

- 4 cities $3! = 6$ possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - acdb
 - adbc
 - adcb

- (Only half usually of interest because just reverse of another path)
Traveling Salesperson Examples

5 cities 4! = 24 possible routes (12 of interest)

- abcde
- abced
- abdce
- abdec
- abecd
- abedc

- acbde
- acbed
- acdbe
- acdeb
- acebd
- acedeb

- adbce
- adbdc
- adcbe
- adcebd
- adebc
- adecb

(12 of interest)
Towers of Hanoi

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>

$t = 0.00549 \times 2^N$

(for a very old PC)

What would a faster computer do for these numbers?
Intractable Algorithms

- Other Games
- More hardware not the answer!
- Predicting Yesterday's Weather
- Actual Examples for Time Complexity
Existence of Noncomputable Functions

❖ **Approach**
 - Matching up Programs and Functions
 - E.g., assume 3 functions, only 2 programs
 - Without details, conclude one function has no program

❖ **Have: Uncountable Infinity of Functions Mapping int to int**
 - How can we show that is true?
 - Functions can be seen as columns in tables
 - Put all functions into a huge (infinite!) table
 - Show that even that cannot hold them all
 - *Can you identify the functions in the following table?*
Table of All Integer to Integer Functions

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>49</td>
<td>14</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>16</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>81</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

...
A Function *NOT* in this (inclusive?) Table

1+1	1	2	6	0	0	8	2	1	4															
2	4+1	4	7	0	1	8	4	1	7															
3	9	6+1	8	0	0	8	6	2	10															
4	16	8	9+1	1	1	8	16	3	13															
5	25	10	10	1+1	0	8	10	5	16															
6	36	12	11	1	1+1	8	36	8	19															
7	49	14	12	1	0	8+114	13	22																
8	64	16	13	1	1	8	64+121	25																
9	81	18	14	1	0	8	18	34+128																
10	100	20	15	1	1	8	100	55	31+1															

.. .
Existence of Noncomputable Functions

- All Programs Can be Ordered (thus *Countable*)
 - By size, shortest program first
 - Just use alphabetical order

- Try to Draw Lines Between Functions and Programs
 - Could draw lines from every program to every function
 - But, have proved functions uncountable...
 - Thus, There Must be Functions With NO Programs!

- Hard to come up with function that computer can't produce
 - Possible example: *true* random generator
 (No algorithm can produce truly random number sequence)
 - Use Table
 - Program must be of finite size; Requires infinite table
Noncomputable Programs

- Programs that Read Programs
 - What programs have we used that read in programs?
 - Express programs as a single string (formatting messed up)
 - Therefore, could write program to see if there is an \textit{if} statement in the program: answers YES or NO
 - How about, \textit{Does program halt}?
 - Lack of \textit{while} (and functions) guarantees a halt
 - Not very sophisticated
 - \textit{Not Halting for All Possible Inputs} is usually considered a Bug

- Solving the Halting Problem
 - Write specific code to check out more complicated cases
 - Gets more and more involved...
The Halting Problem: Does it Halt?

Consider Following Program: *Does it halt for all possible input values to* k?

// input an integer value for k
while (k > 1)
{
 if (((k/2) * 2 == k)) // is k even?
 k = k / 2;
 else
 k = 3 * k + 1;
}

Try It!
- e.g. **17**: 52 26 13, 40 20 10 5, 16 8 4 2 1
- For a long time, no one knew whether this quit for all inputs.
Proving Noncomputability

- Mathematicians have proven that no one, finite program can check this property for all possible programs
- Examples of non-computable problems
 - Equivalence: Define by \textit{same input} \rightarrow \textit{same output}
 - Use variation of above program; not sure it ends
 - Cannot generally prove equivalence
- Use \textit{Proof by Contradiction} (Indirect Proof)
- Proving non-computability
 - Sketch of proof
Noncomputability Proof

- *Assume Existence of Function* halt:

 $$\text{String } \text{halt}(\text{String } p, \text{ String } x);$$

 - Inputs: $p =$ *program*, $x =$ *input data*
 - Returns: "Halts"
 or "Does not halt"

- *Can now write*:

 $$\text{String } \text{selfhalt}(\text{String } p);$$

 - Inputs: $p =$ *program*
 - Returns: "Halts on self"
 or "Does not halt on self"
 - Uses: $\text{halt}(p, p);$
 - i.e.: asking if halts when program p uses *itself* as data
Noncomputability Proof.2

- **Now write function** `contrary`:

```java
void contrary() {
    TextField program = new TextField(1000);
    String p, answer;
    p = program.getText();
    answer = selfhalt(p);
    if (answer.equals("Halts on self")) {
        while (true) // infinite loop
            answer = "x";
    } else {
        return; // i.e., halts
    }
}
```

- "Feed it" *this* program.
Noncomputability Proof.3

- Paradox!
 - If \texttt{halt} program decides it halts, it goes into infinite loop and goes on forever
 - If \texttt{halt} program decides it doesn't halt, it quits immediately
- Therefore \texttt{halt} cannot exist!

- Whole classes of programs on program behavior are non-computable
 - The Equivalence Problem
 - Many other programs that deal with the \textit{behavior} of a program
Living with Noncomputability

- **What Does It All Mean?**
 - Not necessarily a very tough constraint unless you get “too greedy”.
 - Programs can't do everything.
 - Beware of people who say they can!