Computer Science 104:
Computer Organization, Design & Programming

Alvin R. Lebeck

General Information

Instructor: Alvin R. Lebeck
Office: D308 LSRC
class: alvy@cs.duke.edu
Office Hours: Thurs 10:30-11:30, Fri 1:00 to 2:00, or by appointment

Teaching Assistant: Yang Liu
Office: 005 North
class: yliu@cs.duke.edu
Office Hours: Wed 3:00 to 4:00 (one more TBD)
More Information

Undergraduate TAs
- To be decided
- Office Hours
- Read Forums
- Grade Homework

Altera DE2 Development Board
Fridays ("recitation") we will be hands on in class
- Yes, we really are meeting 3 times a week for 75min!

Information

- I AM NOT PERFECT
 ➢ Ask Questions!!
- Course Web Page
 http://www.cs.duke.edu/courses/spring07/cps104
 ➢ Lecture slides available on web before or shortly after class
 ➢ See lectures link for readings also
- Blackboard (http://courses.duke.edu)
 ➢ Grades
 ➢ Questions, discussions (communication->forums)
- You are required to monitor both web sites
 ➢ Homework will appear on web page
 ➢ If necessary, additional information about homework on blackboard
 ➢ You can post questions about homework on blackboard
Textbook, etc.

- **Text:** *Computer Organization & Design 3rd Ed.* (Patterson & Hennessy)
 - You are expected to complete the assigned readings
 - Some material on the CD (e.g., Appendix)

- **Read**
 - Chapter 1, Ch 3.1-3.2 pgs 160-168, 3.6 pgs 189-197
 - Optional: Brief History of Computers

- **C tutorial** http://computer.howstuffworks.com/c.htm
- **Homework #1 Assigned due Jan 24.**

Grading

- **Grade breakdown**
 - Midterm Exams 30%
 - Final Exam 20%
 - Homework 25%
 - Project 25%

- **Late homework policy**
 - 10 point reduction for each day late
 - No credit after the homework is graded and handed back.
 - Feedback => return results quickly => grade almost immediately => late homework is a hassle

- **This course takes time, start assignments early.**
 - Average 3-5 hrs/week from previous course evaluations.
 - May be different this semester with new hardware
Course Problems

• Academic Conduct
 ➢ Duke Community Standard
 ➢ Studying together in groups is encouraged
 ➢ All written work must be your own, unless otherwise stated. Programs that are substantially the same as others will receive a grade of 0
 ➢ Common examples of cheating: running out of time on an assignment and then pick up someone else’s output, person asks to borrow solution “just to take a look”, copying an exam question, …

• Can’t make midterms / final, other conflicts
 ➢ Tell us early and we will schedule alternate time

• If you are having problems
 ➢ See me
 ➢ See DUS
 ➢ See Academic Dean (very good resource)

Why Do You Have to Take This Course?

• You want to be a plastic surgeon
• You all know how to use knife, needle, thread
• To be successful you don’t just “cut & paste”
• You have to learn about the body
 ➢ Skin
 ➢ Bones
 ➢ Muscles
• Different parts of the body require different skills
 ➢ Nose
 ➢ Hands
 ➢ Legs
• Who do you want performing your surgery?
Why Do You Have to Take This Course?

• You want to be a race car driver
• You all know how to drive
• To be successful you don’t just drive
• You must “be in touch with your vehicle”
• You have to learn about the vehicle
 ➢ Engine
 ➢ Suspension
 ➢ Tires
• Is it drag racing, monster trucks, NASCAR, endurance
 ➢ Different cars
 ➢ Different style of driving
• Who is going to win the Indy 500, 16 year old or Jeff Gordon?

Why Do You Have to Take This Course?

• You want to be a Computer Scientist
• You know how to program (CPS 6, 100, 108)
• To be successful you don’t just program
• You have to understand the machine
 ➢ Hardware: Processor, memory, disk, etc.
 ➢ SW: Operating system, Programming Languages/Compilers
• What kind of computer scientist?
 ➢ Databases, networks
 ➢ Scientific computing (motion of planetary bodies, drug development, computational biology, economics, etc.)
 ➢ Games, virtual reality
 ➢ Embedded: Cell phones, mp3 player, cars
• Who’s code do you want controlling your brakes, airbag, financial transactions? Script kiddie or computer scientist.
The Big Picture

• What is inside a computer?
• How does it execute a program?

The Five Classic Components of a Computer

Processor/CPU
Control
Datapath
Memory
Input
Output
What is Computer Architecture?

• Coordination of levels of abstraction

• Under a set of rapidly changing \textit{Forces}
Forces on Computer Architecture

- Technology
- Programming Languages Compilers
- Operating Systems
- History

Computer Architecture

A Brief History of Computing

- 1645 Blaise Pascal Calculating Machine
- 1822 Charles Babbage
 - Difference Engine
 - Analytic Engine: Augusta Ada King first programmer (woman)
- < 1946 Eckert & Mauchly
 - ENIAC (Electronic Numerical Integrator and Calculator)
- 1947 John von Neumann
 - Proposed Stored Program Computer
 - Properties of Today’s computers
- 1949 Maurice Wilkes
 - EDSAC (Electronic Delay Storage Automatic Calculator)
Commercial Computers

<table>
<thead>
<tr>
<th>Year</th>
<th>Name</th>
<th>Size (cu. ft.)</th>
<th>Adds/sec</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>UNIVAC I</td>
<td>1000</td>
<td>1,900</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>1964</td>
<td>IBM S/360 Model 50</td>
<td>60</td>
<td>500,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>1965</td>
<td>PDP-8</td>
<td>8</td>
<td>330,000</td>
<td>$16,000</td>
</tr>
<tr>
<td>1976</td>
<td>Cray-1</td>
<td>58</td>
<td>166,000,000</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>1981</td>
<td>IBM PC</td>
<td>1</td>
<td>240,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>1991</td>
<td>HP 9000 / model 750</td>
<td>2</td>
<td>50,000,000</td>
<td>$7,4000</td>
</tr>
<tr>
<td>1996</td>
<td>Intel Pro PC</td>
<td>2</td>
<td>400,000,000</td>
<td>$4,400</td>
</tr>
<tr>
<td>2005</td>
<td>Intel Pentium4</td>
<td>0.25-2</td>
<td>4,000,000,000</td>
<td>< $1,000</td>
</tr>
<tr>
<td>2007</td>
<td>Intel Core2Duo</td>
<td>0.25-2</td>
<td>8,000,000,000</td>
<td>$3.00 - $1,000</td>
</tr>
</tbody>
</table>

Microprocessor Trends

- **Intel 8086**
- **Intel 8085**
- **Intel 8080**
- **Intel 80386**
- **Intel 486**
- **Intel Pentium**
- **Intel Pentium II**
- **Intel Pentium III**
- **Intel Pentium IV (P4)**

Projections

Sense of scale
Other Technologies

- Games
 - Console, handheld, PC
 - play each gameboy in the world for 60 seconds, finish in 190 years
- MP3 Players
- Digital Cameras
- PDA
- Cell Phones

- What is common among all these technologies?

Levels of Representation

```
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;
```

```
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111
```

- Transistors turning on and off
What You Will Learn

• The basic operation of a computer
 ➢ primitive operations (instructions)
 ➢ arithmetic
 ➢ Logic design (implement a simple processor)
 ➢ instruction sequencing and processing
 ➢ memory
 ➢ input/output
 ➢ etc.
• Understand the relationship between abstractions
 ➢ interface design
 ➢ high-level program to control signals (SW -> HW)
 ➢ Astrachan “from the abstract to the ridiculous”
• Software performance depends on understanding underlying HW

Course Outline

• Introduction to Computer Organization
• Data Representations & Memory
• Instruction Set Architecture
• Assembly level programming
 ➢ Instructions
 ➢ Addressing, procedure calls and Exceptions
 ➢ Linking & Loading
 ➢ NiosII programming.
• Digital Logic
 ➢ Digital Gates and Boolean Algebra
 ➢ Arithmetic and Logic circuits, Finite State Machines
 ➢ You will design and program a simple processor in this class
Course Outline (continue):

• The Central Processing Unit (CPU)
 ➢ The ALU
 ➢ The data path
 ➢ Finite State Control
• The Memory Hierarchy
 ➢ Cache Memory
 ➢ Virtual Memory and Paging
• Buses and Interrupts
• I/O Devices and Networks
• Advanced Computer Architecture (if there is time)
 ➢ Pipelining
 ➢ Multiprocessors

Overview

• First step in mapping high-level to machine
 ➢ Data representations

Outline

• Representations
• Binary Numbers
• Integer numbers
• Floating-point numbers
• Characters
• Storage sizes: Bit, Byte, Word, Double-word
• Memory
• Arrays
• Pointers
Representations (Group task)

- Form partners
- Using only the three symbols @ # $ specify a representation for the following:
 - All integers from 0 to 10
 - Commands to 1) walk, 2) turn, 3) sit, 4) raise right arm, 5) raise left arm

- Using only your representation write down series of commands & integers (if appropriate, e.g., raise left arm-3, turn-2)
 - Must have at least 5 commands

What You Know Today

C++

```cpp
... 
int result;
double score;

double curve(double score) {
  return(score * 0.22124);
}
int main()
{
  int *x;
  ...
  result = x + result;
cout << "Score is " <<
curve(80) << endl;
...
}
```

JAVA

```java
... 
System.out.println("Please Enter In Your First Name: ");
String firstName = 
bufRead.readLine();
System.out.println("Please Enter In The Year You Were Born: ");
String bornYear = 
bufRead.readLine();
System.out.println("Please Enter In The Current Year: ");
String thisYear = 
bufRead.readLine();
int bYear = 
Integer.parseInt(bornYear);
int tYear = 
Integer.parseInt(thisYear);
int age = tYear - bYear ;
System.out.println("Hello " +
firstName + ", You are " + age + 
" years old");
```
High Level to Assembly

High Level Language (C, C++, Fortran, Java, etc.)
- Statements
- Variables
- Operators
- Methods, functions, procedures

Assembly Language
- Instructions
- Registers
- Memory

Data Representation
- Compute two hundred twenty nine minus one hundred sixty seven divided by twelve
- Compute XIX - VII + IV
- We reason about numbers many different ways
- Computers store variables (data)
- Typically Numbers and Characters or composition of these
- The key is to use a representation that is “efficient”
Number Systems

- A number is a mathematical concept
- Many ways to represent a number
 - 10, ten, 2x5, X, 100/10, |||| ||||
- Symbols are used to create a representation

- Which representation is best for counting?
- Which representation is best for addition and subtraction?
- Which representation is best for multiplication and division?

More Number Systems

- Humans use decimal (base 10)
 - digits 0-9 are composed to make larger numbers

 \[11 = 1\times10^1 + 1\times10^0 \]
 - weighted positional notation
- Addition and Subtraction are straightforward
 - carry and borrow (today called regrouping)
- Multiplication and Division less so
 - can use logarithms and then do adds and subtracts
Changing Base (Radix)

- Given 4 positions, what is the largest number you can represent?

Number Systems for Computers

- Today’s computers are built from transistors
- Transistor is either off or on
- Need to represent numbers using only off and on
 - two symbols
- off and on can represent the digits 0 and 1
 - BIT is Binary Digit
 - A bit can have a value of 0 or 1
- Binary representation
 - weighted positional notation using base 2
 \[11_{10} = 1 \times 2^3 + 1 \times 2^1 + 1 \times 2^0 = 1011_2 \]
 \[11_{10} = 8 + 2 + 1 \]
- What is largest number, given 4 bits?
Binary, Octal and Hexadecimal numbers

- Computers can input and output decimal numbers but they convert them to internal binary representation.
- Binary is good for computers, hard for us to read
 - Use numbers easily computed from binary
 - Binary numbers use only two different digits: \{0,1\}
 - Example: \(1200_{10} = 0000010010110000_2\)
- Octal numbers use 8 digits: \{0 - 7\}
 - Example: \(1200_{10} = 04260_8\)
- Hexadecimal numbers use 16 digits: \{0-9, A-F\}
 - Example: \(1200_{10} = 04B0_{16} = 0x04B0\)
 - does not distinguish between upper and lower case

Binary and Octal

- Easy to convert Binary numbers To/From Octal.
- Group the binary digits in groups of three bits and convert each group to an Octal digit.
- \(2^3 = 8\)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>2</td>
</tr>
<tr>
<td>011</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td>5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
<tr>
<td>111</td>
<td>7</td>
</tr>
</tbody>
</table>

Example:

\[
11 \ 000 \ 010 \ 011 \ 001 \ 110 \ 100 \ 111 \ 101 \ 010 \ 101_2
\]

\[
3 \ 0 \ 2 \ 3 \ 1 \ 6 \ 4 \ 7 \ 5 \ 2 \ 5_8
\]
Binary and Hex

• To convert to and from hex: group binary digits in groups of four and convert according to table.
• \(2^4 = 16\)

<table>
<thead>
<tr>
<th>Hex</th>
<th>Bin</th>
<th>Hex</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>

Example:

\[1100 \ 0010 \ 0110 \ 0111 \ 0100 \ 1111 \ 1101 \ 0101_2\]

C 2 6 7 4 F D 5_16

Admin

• Read Chapter 1, Ch 3.1-3.2 pgs 160-168, 3.6 pgs 189-197

• Optional: Brief History of Computers

• C tutorial http://computer.howstuffworks.com/c.htm

• Homework #1 Assigned due Jan 24.

Next

• Start in on abstractions: data representation