Section: Transforming grammars
(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \rightarrow x_1Bx_2 \]

where A and B are different variables, and B has the productions

\[B \rightarrow y_1 | y_2 | \ldots | y_n \]

Then can construct G’ from G by deleting

\[A \rightarrow x_1Bx_2 \]

from P and adding to it

\[A \rightarrow x_1y_1x_2 | x_1y_2x_2 | \ldots | x_1y_nx_2 \]

Then, \(L(G) = L(G') \).
Example:

\[
S \rightarrow aBa \quad \text{becomes} \\
B \rightarrow aS \mid a
\]

Definition: A production of the form \(A \rightarrow Ax, A \in V, x \in (V \cup T)^* \) is \textit{left recursive}.
Example Previous expression grammar was left recursive.

\[
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow I \mid (E) \\
I \rightarrow a \mid b
\]

Derivation of \(a + b + a + a\) is:

\[
E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \Rightarrow a + T + T + T
\]
Theorem (Removing Left recursion)
Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$
A \rightarrow A.x_1 \mid A.x_2 \mid \ldots \mid A.x_n \\
A \rightarrow y_1 | y_2 | \ldots | y_m
$$

where x_i, y_i are in $(V \cup T)^*$.

Then $G'=(V\cup \{Z\}, T, S, P')$ and P' replaces rules of form above by

$$
A \rightarrow y_i | y_i Z, \ i=1,2,\ldots,m \\
Z \rightarrow x_i | x_i Z, \ i=1,2,\ldots,n
$$
Example:

\[E \rightarrow E + T | T \] becomes

\[T \rightarrow T \ast F | F \] becomes

Now, Derivation of \(a+b+a+a \) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. L(G)=L(G’).
To Remove Useless Productions:

Let $G = (V, T, S, P)$.

I. Compute $V_1 = \{\text{Variables that can derive strings of terminals}\}$

1. $V_1 = \emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1 x_2 \ldots x_n$, $x_i \in (T* \cup V_1)$, add A to V_1

3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1 = (V_1, T, S, P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.
Example:

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \mid b \]
\[C \rightarrow cBc \mid a \]
\[D \rightarrow bCb \]
\[E \rightarrow Aa \mid b \]
Theorem (remove \(\lambda \) productions) Let \(G \) be a CFG with \(\lambda \) not in \(L(G) \). Then \(\exists \) a CFG \(G' \) having no \(\lambda \)-productions s.t. \(L(G) = L(G') \).

To Remove \(\lambda \)-productions

1. Let \(V_n = \{ A \mid \exists \) production \(A \rightarrow \lambda \} \)
2. Repeat until no more additions
 - if \(B \rightarrow A_1 A_2 \ldots A_m \) and \(A_i \in V_n \) for all \(i \), then put \(B \) in \(V_n \)
3. Construct \(G' \) with productions \(P' \) s.t.
 - if \(A \rightarrow x_1 x_2 \ldots x_m \in P, m \geq 1 \), then put all productions formed when \(x_j \) is replaced by \(\lambda \) (for all \(x_j \in V_n \)) s.t. \(|\text{rhs}| \geq 1 \) into \(P' \).
Example:

S → Ab
A → BCB | Aa
B → b | λ
C → cC | λ
Definition Unit Production

A → B

where A,B ∈ V.

Consider removing unit productions:

Suppose we have

A → B becomes
B → a | ab

But what if we have

A → B becomes
B → C
C → A
Theorem (Remove unit productions)
Let \(G = (V, T, S, P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G’ = (V’, T’, S, P’) \) that does not have any unit-productions and \(L(G) = L(G’) \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow^* B \) (Draw a dependency graph)
2. Construct \(G’ = (V’, T’, S, P’) \) by

 (a) Put all non-unit productions in \(P’ \)
 (b) For all \(A \Rightarrow^* B \) s.t. \(B \rightarrow y_1 | y_2 | \ldots y_n \in P’ \), put \(A \rightarrow y_1 | y_2 | \ldots y_n \in P’ \)
Example:

\[S \rightarrow AB \]
\[A \rightarrow B \]
\[B \rightarrow C \mid Bb \]
\[C \rightarrow A \mid c \mid Da \]
\[D \rightarrow A \]
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CB\text{cd} \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_j x_j, \ j > i \\
Z_i \rightarrow A_j x_j, \ j \leq n \\
A_i \rightarrow ax_i
\]

where \(a \in T, \ x_i \in V^*,\) and \(Z_i\) are new variables introduced for left recursion.

4. All productions with \(A_n\) are in the correct form, \(A_n \rightarrow ax_n.\) Use these productions as substitutions to get \(A_{n-1}\) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3},\) etc until all productions are in the correct form.