Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
$$

Is ba in $L(G)$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
$$

Is ba in $L(G)$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

$$
S \rightarrow aS \mid b
$$

Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.
- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

- If \(w \Rightarrow a\) then
 - \(a \) is in FIRST(w)
- If \(w \Rightarrow \lambda \) then
 - \(\lambda \) is in FIRST(w)

To compute FIRST:

1. FIRST(a) = \{a\}
2. FIRST(X)
 (a) If \(X \rightarrow aw \) then
 - \(a \) is in FIRST(X)
 (b) If \(X \rightarrow \lambda \) then
 - \(\lambda \) is in FIRST(X)
 (c) If \(X \rightarrow Aw \) and \(\lambda \in \text{FIRST}(A) \) then
 - Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST(X_1X_2X_3..X_K) =
 - FIRST(X_1)
 - \(\cup \) FIRST(X_2) if \(\lambda \) is in FIRST(X_1)
 - \(\cup \) FIRST(X_3) if \(\lambda \) is in FIRST(X_1) and \(\lambda \) is in FIRST(X_2)
 ...
 - \(\cup \) FIRST(X_K) if \(\lambda \) is in FIRST(X_1) and \(\lambda \) is in FIRST(X_2) \(... \) and \(\lambda \) is in FIRST(X_{K-1})
 - \{\lambda\} if \(\lambda \notin \text{FIRST}(X_J) \) for all \(J \)
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \lambda
\end{align*}
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =

Definition: \(\text{FOLLOW(X)} = \text{set of terminals that can appear to the right of X in some derivation.} \)

If \(S \xrightarrow{*} wAav \) then
\(a \) is in \(\text{FOLLOW(A)} \)

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)
To compute FOLLOW:

1. $\$ \text{ is in } \operatorname{FOLLOW}(S)$
2. If $A \to wBv$ and $v \neq \lambda$ then
 \[\operatorname{FIRST}(v) - \{\lambda\} \text{ is in } \operatorname{FOLLOW}(B) \]
3. IF $A \to wB$ OR
 \[A \to wBv \text{ and } \lambda \text{ is in } \operatorname{FIRST}(v) \text{ then} \]
 \[\operatorname{FOLLOW}(A) \text{ is in } \operatorname{FOLLOW}(B) \]
4. λ is never in FOLLOW

Example:

\[
\begin{align*}
S & \to aSc \mid B \\
B & \to b \mid \lambda
\end{align*}
\]

$\operatorname{FOLLOW}(S) =$

$\operatorname{FOLLOW}(B) =$

Example:

\[
\begin{align*}
S & \to BCD \mid aD \\
A & \to CEB \mid aA \\
B & \to b \mid \lambda \\
C & \to dB \mid \lambda \\
D & \to cA \mid \lambda \\
E & \to e \mid fE
\end{align*}
\]

$\operatorname{FOLLOW}(S) =$

$\operatorname{FOLLOW}(A) =$

$\operatorname{FOLLOW}(B) =$

$\operatorname{FOLLOW}(C) =$

$\operatorname{FOLLOW}(D) =$

$\operatorname{FOLLOW}(E) =$