Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
$$

Is ba in $L(G)$? Running time?

New grammar G' is:

$$
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

• Start with S and try to derive the string.

$$S \rightarrow aS \mid b$$

• Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

Examples: Shift-reduce, Operator-Precedence, LR Parser
The function \textsc{FIRST}:

\[
G = (V, T, S, P) \\
w, v \in (V \cup T)^* \\
a \in T \\
X, A, B \in V \\
X_I \in (V \cup T)^+
\]

Definition: \textsc{FIRST}(w) = the set of terminals that begin strings derived from \(w\).

If \(w \xRightarrow{*} av\) then
\[a \text{ is in FIRST}(w)\]
If \(w \xRightarrow{*} \lambda\) then
\[\lambda \text{ is in FIRST}(w)\]
To compute FIRST:

1. FIRST(a) = \{a\}

2. FIRST(X)

 (a) If X → aw then
 a is in FIRST(X)

 (b) IF X → λ then
 λ is in FIRST(X)

 (c) If X → Aw and λ ∈ FIRST(A) then
 Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST($X_1X_2X_3..X_K$) =

- FIRST(X_1)
- \cup FIRST(X_2) if λ is in FIRST(X_1)
- \cup FIRST(X_3) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ...
- \cup FIRST(X_K) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ... and λ is in FIRST(X_{K-1})
- $\{\lambda\}$ if $\lambda \notin$ FIRST(X_J) for all J
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If S \Rightarrow^* wAav then
a is in FOLLOW(A)

To compute FOLLOW:

1. $ is in FOLLOW(S)
2. If A \rightarrow wBv and v \neq \lambda then
 FIRST(v) - {\lambda} is in FOLLOW(B)
3. IF A \rightarrow wB OR
 A \rightarrow wBv and \lambda is in FIRST(v)
 then
 FOLLOW(A) is in FOLLOW(B)
4. \lambda is never in FOLLOW
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FOLLOW(S) =

FOLLOW(B) =
Example:

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =