What will we do in CPS 140?

Questions

- Can you write a program to determine if a string is an integer?
 9998.89 8abab 789342
- Can you do this if your machine had no additional memory other than the program? (can’t store any values and look at them again)
- Can you write a program to determine if the following are arithmetic expressions?
 \[((34 + 7 \times (18/6)))\]
 \[(((((a + b) + c) \times d(e + f))))\]
- Can you do this if your machine had no additional memory other than the program?
- Can you write a program to determine the value of the following expression?
 \[((34 + 7 \times (18/6)))\]
- Can you write a program to determine if a file is a valid C++/Java program?
- Can you write a program to determine if a Java/C++ program given as input will ever halt?

Language Hierarchy

<table>
<thead>
<tr>
<th>Grammars</th>
<th>Automata</th>
</tr>
</thead>
<tbody>
<tr>
<td>unrestricted grammar</td>
<td>Turing machine</td>
</tr>
<tr>
<td>CFG</td>
<td>pushdown automata</td>
</tr>
<tr>
<td>regular grammar</td>
<td>finite automata</td>
</tr>
</tbody>
</table>
Power of Machines

<table>
<thead>
<tr>
<th>automata</th>
<th>Can do?</th>
<th>Can’t do?</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite automata (FA) (no memory)</td>
<td>integers</td>
<td>arith expr</td>
</tr>
<tr>
<td>pushdown automata (PDA) (only memory is stack)</td>
<td>arith expr</td>
<td>compute expr</td>
</tr>
<tr>
<td>Turing machines (TM) (infinite memory)</td>
<td>compute expr</td>
<td>decide if halts</td>
</tr>
</tbody>
</table>

Application

Compiler

- Question: Java/C++ program - is it valid?
- Question: language L, program P - is P valid?

Stages of a Compiler

C++ program

lexical analysis

tokens

syntax analysis

parse tree

code generation

assembly language program

C++ program

executable

prog.cpp

prog.exe
L-Systems - Model the Growth of Plants

Set Theory - Read Chapter 1 Linz.

A Set is a collection of elements.

A={1,4,6,8}, B={2,4,8}, C={3,6,9,12,...}, D={4,8,12,16,...}

- (union) $A \cup B =$
- (intersection) $A \cap B =$
- $C \cap D =$
- (member of) $42 \in C$?
- (subset) $B \subseteq C$?
- $B \cap A \subseteq D$?
- (product) $A \times B =$
- $|B| =$
- $|A \times B| =$
- $\emptyset \in B \cap C$?
- (powerset) $2^B =$

Example What are all the subsets of \{3,5\}?

How many subsets does a set S have?

| $|S|$ | number of subsets |
|------|-------------------|
| 0 | 1 |
| 1 | 2 |
| 2 | 4 |
| 3 | 8 |
| 4 | 16 |

How do you prove? Set S has $2^{|S|}$ subsets.
Technique: Proof by Induction

1. Basis: P(1)? Prove smallest instance is true.
2. Induction Hypothesis - I.H.
 Assume P(n) is true for 1,2,...,n
3. Induction Step - I.S.
 Show P(n+1) is true (using I.H.)

Proof of Example:

1. Basis:
2. I.H. Assume
3. I.S. Show

Ch. 1: 3 Major Concepts

- languages
- grammars
- automata

Languages

- Σ - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over Σ

Examples

- $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $L=\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...\}$
- $\Sigma = \{a, b, c\}$
 $L=\{ab, ac, cabb\}$
- $\Sigma = \{a, b\}$
 $L=\{a^n b^n \mid n > 0\}$
Notation

- symbols in alphabet: a, b, c, d, ...
- string names: u,v,w,...

Definition of concatenation

Let \(w = a_1a_2...a_n \) and \(v = b_1b_2...b_m \)

Then \(w \circ v \) OR \(wv = \)

See book for formal definitions of other operations.

String Operations

strings: \(w = abbc, v = ab, u = c \)

- size of string
 \(|w| + |v| = \)
- concatenation
 \(v^3 = vvv = vovov = \)
- \(v^0 = \)
- \(w^R = \)
- \(|vv^Rw| = \)
- \(ab \circ \lambda = \)

Definition

\(\Sigma^* = \) set of strings obtained by concatenating 0 or more symbols from \(\Sigma \)

Example

\(\Sigma = \{a, b\} \)

\(\Sigma^* = \)

\(\Sigma^+ = \)

Examples

\(\Sigma = \{a, b, c\}, \ L_1 = \{ab, bc, aba\}, \ L_2 = \{c, bc, bcc\} \)

- \(L_1 \cup L_2 = \)
- \(L_1 \cap L_2 = \)
- \(L_1^c = \)
- \(L_1^c \cap L_2 = \)
- \(L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} = \)
Definition

\[L^0 = \{ \lambda \} \]
\[L^2 = L \circ L \]
\[L^3 = L \circ L \circ L \]
\[L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \ldots \]
\[L^+ = L^1 \cup L^2 \cup L^3 \ldots \]

Grammars

grammar for english

\[<\text{sentence}> \rightarrow <\text{subject}><\text{verb}><\text{d.o.}> \]
\[<\text{subject}> \rightarrow <\text{noun}> | <\text{article}><\text{noun}> \]
\[<\text{verb}> \rightarrow \text{hit} | \text{ran} | \text{ate} \]
\[<\text{d.o.}> \rightarrow <\text{article}><\text{noun}> | <\text{noun}> \]
\[<\text{noun}> \rightarrow \text{Fritz} | \text{ball} \]
\[<\text{article}> \rightarrow \text{the} | \text{an} | \text{a} \]

Examples (derive a sentence)

Fritz hit the ball.

\[<\text{sentence}> \rightarrow <\text{subject}><\text{verb}><\text{d.o.}> \]
\[\rightarrow <\text{noun}><\text{verb}><\text{d.o.}> \]
\[\rightarrow \text{Fritz} <\text{verb}><\text{d.o.}> \]
\[\rightarrow \text{Fritz hit} <\text{d.o.}> \]
\[\rightarrow \text{Fritz hit} <\text{article}><\text{noun}> \]
\[\rightarrow \text{Fritz hit the} <\text{noun}> \]
\[\rightarrow \text{Fritz hit the ball} \]

Can we also derive the sentences?

The ball hit Fritz.

The ball ate the ball

Syntactically correct?

Semantically correct?
Grammar

\[G = (V, T, S, P) \] where

- \(V \) - variables (or nonterminals)
- \(T \) - terminals
- \(S \) - start variable (\(S \in V \))
- \(P \) - productions (rules)

\[x \rightarrow y \text{ "means" replace } x \text{ by } y \]

\[x \in (V \cup T)^+, y \in (V \cup T)^* \]

where \(V, T, \) and \(P \) are finite sets.

Definition

\[w \Rightarrow z \quad \text{w derives z} \]

\[w \Rightarrow^* z \quad \text{derives in 0 or more steps} \]

\[w \Rightarrow^+ z \quad \text{derives in 1 or more steps} \]

Definition

\[G = (V, T, S, P) \]

\[L(G) = \{ w \in T^* \mid S \Rightarrow^* w \} \]

Example

\[G = (\{S\}, \{a, b\}, S, P) \]

\[P = \{ S \rightarrow aaS, S \rightarrow b \} \]

\[L(G) = \]

Example

\[L(G) = \{ a^n cc b^n \mid n > 0 \} \]

\[G = \]

Automata Abstract model of a digital computer