Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- k - number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols
Convert CFG to PDA

The constructed NPDA:

- three states: s, q, f
 start in state s, assume z on stack
- all rewrite rules in state s,
 backwards
 rules pop rhs, then push lhs
 \((s, \text{lhs}) \in \delta(s, \lambda, \text{rhs})\)
 This is called a reduce operation.
- additional rules in s to recognize terminals
 For each \(x \in \Sigma, g \in \Gamma, (s, xg) \in \delta(s, x, g)\)
 This is called a shift operation.
- pop S from stack and move into state q
- pop z from stack, move into f, accept.
Example: Construct a PDA.

\[S \rightarrow aSb \]
\[S \rightarrow b \]
LR Parsing Actions

1. shift
 transfer the lookahead to the stack
2. reduce
 For $X \rightarrow w$, replace w by X on the stack
3. accept
 input string is in language
4. error
 input string is not in language

LR(1) Parse Table

- Columns:
 terminals, $\$ and variables
- Rows:
 state numbers: represent patterns in a derivation
LR(1) Parse Table Example

1) $S \rightarrow aSb$
2) $S \rightarrow b$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>s3</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Definition of entries:

- sN - shift terminal and move to state N
- N - move to state N
- rN - reduce by rule number N
- acc - accept
- blank - error
state = 0
push(state)
read(symbol)
entry = T[state,symbol]
while entry.action ≠ accept do
 if entry.action == shift then
 push(symbol)
 state = entry.state
 push(state)
 read(symbol)
 else if entry.action == reduce then
 do 2*size_rhs times {pop()}
 state := top-of-stack()
 push(entry.rule.lhs)
 state = T[state,entry.rule.lhs]
 push(state)
 else if entry.action == blank then
 error
 entry = T[state, symbol]
end while
if symbol ≠ $ then error
Example:

Trace aabbb

```
  5
  b
  3 4 4 5
  b S S b
  2 2 2 2 4 4
  a a a a S S
  2 2 2 2 2 2 2 1
  a a a a a a a S
  0 0 0 0 0 0 0 0
S:  z z z z z z z z z z
L:  a a b b b b b b b $ $
A:
```
To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- Add $S' \rightarrow S$
- place a marker “_” on the rhs
 $S' \rightarrow _S$
- Compute closure($S' \rightarrow _S$).
 Def. of closure:

1. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$
 if x is a terminal.

2. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$
 $\cup \text{closure}(x \rightarrow _w)$ for all w if x is a variable.
• The closure($S' \rightarrow _S$) is state 0 and “unprocessed”.

• Repeat until all states have been processed
 – unproc = any unprocessed state
 – For each x that appears in $A \rightarrow ux_v$ do
 * Add a transition labeled “x”
 from state “unproc” to a new state with production $A \rightarrow ux_v$
 * The set of productions for the new state are: $\text{closure}(A \rightarrow ux_v)$
 * If the new state is identical to another state, combine the states Otherwise, mark the new state as “unprocessed”

• Identify final states.
Example: Construct DFA

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$
Backtracking through the DFA
Consider $aabbb$

- Start in state 0.
- Shift “a” and move to state 2.
- Shift “a” and move to state 2.
- Shift “b” and move to state 3.
 Reduce by “$S \rightarrow b$”
 Pop “b” and Backtrack to state 2.
 Shift “S” and move to state 4.
- Shift “b” and move to state 5.
 Reduce by “$S \rightarrow aSb$”
 Pop “aSb” and Backtrack to state 2.
 Shift “S” and move to state 4.
- Shift “b” and move to state 5.
 Reduce by “$S \rightarrow aSb$”
 Pop “aSb” and Backtrack to state 0.
Shift “S” and move to state 1.

- Accept. aabbb is in the language.
To construct LR(1) table from diagram:

1. If there is an arc from state1 to state2
 (a) arc labeled x is terminal or $\ T[state1, x] = \text{sh} \ state2$
 (b) arc labeled X is nonterminal
 $T[state1, X] = state2$

2. If state1 is a final state with $X \rightarrow w$
 For all a in FOLLOW(X),
 $T[state1,a] = \text{reduce by } X \rightarrow w$

3. If state1 is a final state with $S' \rightarrow S$
 $T[state1,\$] = \text{accept}$

4. All other entries are error
Example: LR(1) Parse Table

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

<table>
<thead>
<tr>
<th>Stack contents</th>
<th>State number</th>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>0</td>
<td>a b $ S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Actions for entries in LR(1) Parse table $T[\text{state}, \text{symbol}]$

Let entry $= T[\text{state}, \text{symbol}]$.

- **If symbol is a terminal or $\$**
 - If entry is “shift state i”
 push lookahead and state i on the stack
 - If entry is “reduce by rule $X \rightarrow w$”
 pop w and k states (k is the size of w) from the stack.
 - If entry is “accept”
 Halt. The string is in the language.
 - If entry is “error”
 Halt. The string is not in the language.
If symbol is nonterminal
We have just reduced the rhs of a production $X \rightarrow w$ to a symbol. The entry is a state number, call it $state_i$. Push $T[state_i, X]$ on the stack.
Constructing Parse Tables for CFG’s with λ-rules

$A \rightarrow \lambda$ written as $A \rightarrow \lambda$

Example

$S \rightarrow \text{ddX}$
$X \rightarrow \text{aX}$
$X \rightarrow \lambda$

Add a new start symbol and number the rules:

(0) $S' \rightarrow S$
(1) $S \rightarrow \text{ddX}$
(2) $X \rightarrow \text{aX}$
(3) $X \rightarrow \lambda$

Construct the DFA:
Construct the LR(1) Parse Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>d</th>
<th>$</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible Conflicts:

1. Shift/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[A \rightarrow abcd \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[A \rightarrow ab_ cd \]

2. Reduce/Reduce Conflict
 Example:

 \[A \rightarrow ab \]
 \[B \rightarrow ab \]

 In the DFA:

 \[A \rightarrow ab_ \]
 \[B \rightarrow ab_ \]

3. Shift/Shift Conflict