Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.

\(\delta : Q \times \Sigma \rightarrow Q\)

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

\[\begin{array}{c|cc}
 & 0 & 1 \\
\hline 0 & 0 & q_0 \\
q_1 & q_0 & q_1 \\
\end{array}\]

Example of a move: \(\delta(q_0, 1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = \delta(q, s)
 s = next symbol to the right on tape
if q \in F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) 1 0 0 2) 1 0 0
 q0 q0
 q1 q1

3) 1 0 0 4) 1 0 0
 q0 q0
 q1 q1

Definition:

\delta^*(q, \lambda) = q
\delta^*(q, wa) = \delta(\delta^*(q, w), a)

Definition The language accepted by a DFA M=(Q,\Sigma,\delta,q_0,F) is set of all strings on \Sigma accepted by M. Formally,

L(M)={w \in \Sigma^* | \delta^*(q_0, w) \in F}
Trap State

Example: \(L(M) = \{b^n a \mid n > 0\} \)

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\} \]

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = L(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or accepter)

Definition

An NFA = (Q, Σ, δ, q₀, F)

where

Q is a finite set of states
Σ is the tape (input) alphabet
q₀ is the initial state
F ⊆ Q is the set of final states.
δ: Q × (Σ + {λ}) → 2^Q

Example

![NFA Diagram]

Note: In this example δ(q₀, a) =

Example

L = {a^n b^n | n > 0} ∪ {a^n b | n > 0}

Definition

q_j ∈ δ*(q_i, w) if and only if there is a walk from q_i to q_j labeled w.

Example

From previous example:

δ*(q₀, ab) =

δ*(q₀, aba) =

Definition: For an NFA M, L(M) = {w ∈ Σ* | δ*(q₀, w) ∩ F ≠ ∅}

The language accepted by NFA M is all strings w such that there exists a walk labeled w from the start state to the final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA Diagram]

Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$q_D =$

$f_D =$

$\delta_D :$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if \(\exists w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Properties and Proving - Problem 2

Consider the property Truncate_all_proceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceding b’s in each string. If a string does not have a preceding b, then the string is the same in R1awb(L).