Ch. 7 - Pushdown Automata

A DFA = \((Q, \Sigma, \delta, q_0, F)\)

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).

Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F) \]
where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(\Gamma \) is stack alphabet
- \(q_0 \) is initial state
- \(z \) - start stack symbol, (bottom of stack marker), \(z \in \Gamma \)
- \(F \subseteq Q \) is set of final states.
- \(\delta : Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^* \)

Example of transitions

\[
\delta(q_1,a,b) = \{(q_3,b),(q_4,ab),(q_6,\lambda)\}
\]

Meaning: If in state \(q_1 \) with "a" the current tape symbol and "b" the symbol on top of the stack, then pop "b", and either

- move to \(q_3 \) and push "b" on stack
- move to \(q_4 \) and push "ab" on stack ("a" on top)
- move to \(q_6 \)

Transitions can be represented using a transition diagram.

The diagram for the above transitions is:

Each arc is labeled by a triple: \(x,y,z \) where \(x \) is the current input symbol, \(y \) is the top of stack symbol which is popped from the stack, and \(z \) is a string that is pushed onto the stack.

Instantaneous Description:

\((q,w,u)\)

Notation to describe the current state of the machine \((q)\), unread portion of the input string \((w)\), and the current contents of the stack \((u)\).
Description of a Move:

\[(q_1, aw, bx) \vdash (q_2, w, yx)\]

iff

Definition Let \(M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)\) be a NPDA. \(L(M) = \{w \in \Sigma^* \mid (q_0, w, z)^* \vdash (p, \lambda, u), p \in F, u \in \Gamma^*\}\). The NPDA accepts all strings that start in \(q_0\) and end in a final state.

Example: \(L=\{a^n b^n \mid n \geq 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\}\)

Another Definition for Language Acceptance

NPDA \(M\) accepts \(L(M)\) by empty stack:

\[L(M) = \{w \in \Sigma^* \mid (q_0, w, z)^* \vdash (p, \lambda, \lambda)\}\]
Example: \(L=\{a^n b^m c^{n+m} \mid n, m > 0\}, \Sigma = \{a, b, c\}, \Gamma = \{0, z\}\)

Example: \(L=\{ww^R \mid w \in \Sigma^+\}, \Sigma = \{a, b\}, \Gamma = \{z, a, b\}\)

Example: \(L=\{ww\mid w \in \Sigma^*\}, \Sigma = \{a, b\}\)

Examples for you to try on your own: (solutions are at the end of the handout).

- \(L=\{a^n b^m \mid m > n, m, n > 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\}\)
- \(L=\{a^n b^{n+m} c^m \mid n, m > 0\}, \Sigma = \{a, b, c\}\)
- \(L=\{a^n b^{2n} \mid n > 0\}, \Sigma = \{a, b\}\)
Definition: A PDA $M=\langle Q, \Sigma, \Gamma, \delta, q_0, \epsilon, F \rangle$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L = L(M)$.

Examples:

1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic?
2. Previous pda for $\{a^n b^m c^{n+m} | n, m > 0\}$ is deterministic?
3. Previous pda for $\{ww^R | w \in \Sigma^+ \}, \Sigma = \{a, b\}$ is deterministic?
Example: $L = \{a^n b^m | m > n, m, n > 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\}$

Example: $L = \{a^n b^{n+m} c^m | n, m > 0\}, \Sigma = \{a, b, c\}$

Example: $L = \{a^n b^{2n} | n > 0\}, \Sigma = \{a, b\}$
Chapter 7.2

Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $L(M)=L(M')$.

- **Proof** (sketch)

 $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$

 Construct $M'=(Q',\Sigma,\Gamma',\delta',q_s,z',F')$

Theorem Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

- **Proof** (sketch)

 $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$

 Construct $M'=(Q',\Sigma,\Gamma',\delta',q_s,z',F')$
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

- **Proof** (sketch)

 Given (λ-free) CFL L.

 $\Rightarrow \exists$ CFG G such that $L=L(G)$.

 $\Rightarrow \exists$ G’ in GNF, s.t. $L(G)=L(G')$.

 G’=(V,T,S,P). All productions in P are of the form:

Example: Let G’=(V,T,S,P), P=

\[
S \rightarrow aSA \mid aAA \mid b \\
A \rightarrow bBBB \\
B \rightarrow b
\]
Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form $\delta(q_i,a,A)=\{c_1, c_2, \ldots, c_n\}$ where

$$c_i = (q_j, \lambda)$$

or

$$c_i = (q_j, BC)$$

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)
Theorem If $L=L(M)$ for some NPDA M, then L is a CFL.

- **Proof:** Given NPDA M.

 First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

 1. accepts if stack is empty
 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

 $M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $G = (V, \Sigma, S, P)$ where

 $V = \{(q_i, c q_j) | q_i, q_j \in Q, c \in \Gamma\}$

 $(q_i, c q_j)$ represents “starting at state q_i, the stack contents are cw, $w \in \Gamma^*$, some path is followed to state q_j and the contents of the stack are now w”.

 Goal: $(q_0 z q_f)$ which will be the start symbol in the grammar.

 Meaning: We start in state q_0 with z on the stack and process the input tape. Eventually we will reach the final state q_f and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

$L(M) = \{aa^*b\}$, \(M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)\), \(Q=\{q_0, q_1, q_2, q_3\}\), \(\Sigma=\{a, b\}\), \(\Gamma=\{A, z\}\), \(F=\{\}\) M accepts by empty stack.

Construct the grammar \(G=(V,T,S,P)\),

\(V=\{(q_0,Aq_0), (q_0,zq_0), (q_0,Aq_1), (q_0,zq_1), \ldots\}\)

\(T=\Sigma\)

\(S=(q_0,zq_2)\)
Recognizing aaab in M:

\[(q_0, a, a, a, b, z) \vdash (q_0, aab, Az)\]
\[(q_3, ab, z) \vdash (q_0, ab, Az)\]
\[(q_3, b, z) \vdash (q_0, b, Az)\]
\[(q_2, \lambda, z) \vdash (q_1, \lambda, z)\]
\[(q_2, \lambda, \lambda) \vdash (q_2, \lambda, \lambda)\]

Derivation of string aaab in G:

\[(q_0, q_2) \Rightarrow a(q_0, q_3)(q_3, q_2)\]
\[\Rightarrow a(q_3, q_2)\]
\[\Rightarrow a(q_0, q_3)(q_3, q_2)\]
\[\Rightarrow a(q_3, q_2)\]
\[\Rightarrow a(q_0, q_1)(q_1, q_2)\]
\[\Rightarrow aaab(q_1, q_2)\]
\[\Rightarrow aaab\]
Chapter 7.3

Definition: A PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q,a,b)$ contains at most 1 element
2. if $\delta(q,\lambda,b) \neq \emptyset$ then $\delta(q,c,b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L=L(M)$.

Examples:

1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic.
2. Previous pda for $\{a^n b^m c^{n+m} | n,m > 0\}$ is deterministic.
3. Previous pda for $\{ww^R | w \in \Sigma^+\},\Sigma = \{a,b\}$ is nondeterministic.

Note: There are CFL’s that are not deterministic.

$L=\{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}$ is a CFL and not a DCFL.

Proof: $L = \{a^n b^n : n \geq 1\} \cup \{a^n b^{2n} : n \geq 1\}$

It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^n b^{2n} : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M' as follows:

1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.
2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.
3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b’s, must accept if no more b’s and continue if there are more b’s.
4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b’s in M_2 have been replaced by c’s, so the new machine accepts $a^n b^n c^n$.

The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.