Regular Expressions

Method to represent strings in a language

+ union (or)
○ concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\((a + b)^* \cdot a \cdot (a + b)^*\)

Example:

\((aa)^*\)

Definition Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then
 - \(r + s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \) language denoted by R.E. \(r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. If \(r\) and \(s\) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s)\)
 (b) \(L(rs) = L(r) \circ L(s)\)
 (c) \(L((r)) = L(r)\)
 (d) \(L((r)^*) = (L(r)^*)\)

Precedence Rules

* highest
○
+

Example:

\(ab^* + c =\)
Examples:

1. \(\Sigma = \{a, b\}, \{ w \in \Sigma^* \mid w \text{ has an odd number of } a \text{'s followed by an even number of } b \text{'s}\} \).

2. \(\Sigma = \{a, b\}, \{ w \in \Sigma^* \mid w \text{ has no more than } 3 \text{ } a \text{'s and must end in } ab \}\).

3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

• Proof:

\[\emptyset \]
\[\{\lambda\} \]
\[\{a\} \]

Suppose \(r \) and \(s \) are R.E.

1. \(r + s \)
2. \(rs \)
3. \(r^* \)

Example

\(ab^* + c \)

Theorem Let \(L \) be regular. Then \(\exists \) R.E. \(r \) s.t. \(L = L(r) \).

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

• Proof:

\(L \) is regular

\(\Rightarrow \exists \)

1. Assume \(M \) has one final state and \(q_0 \notin F \)
2. Convert to a generalized transition graph (GTG), all possible edges are present.
 If no edge, label with
 Let \(r_{ij} \) stand for label of the edge from \(q_i \) to \(q_j \)
3. If the GTG has only two states, then it has the following form:
 In this case the regular expression is:
 \(r = (r_{ii}^*r_{ij}r_{ji}^*)^*r_{ii}^*r_{ij}r_{jj}^* \)
4. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).
 For all $o \neq k, p \neq k$ use the rule

 r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

 with different values of o and p.

 When done, remove q_k and all its edges. Continue eliminating states until only two states are left.
 Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\[
\begin{align*}
 r + r &= r \\
 s + r^*s &= \\
 r\emptyset &= \\
 \emptyset &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)^{r^*} &=
\end{align*}
\]
and similar rules.

Example:

Section 3.3

Grammar \(G=(V,T,S,P)\)

\begin{itemize}
 \item \(V\) variables (nonterminals)
 \item \(T\) terminals
 \item \(S\) start symbol
 \item \(P\) productions
\end{itemize}

Right-linear grammar:

all productions of form

\[
\begin{align*}
 A &\rightarrow xB \\
 A &\rightarrow x
\end{align*}
\]

where \(A,B \in V, x \in T^*\)

Left-linear grammar:

all productions of form

\[
\begin{align*}
 A &\rightarrow Bx \\
 A &\rightarrow x
\end{align*}
\]

where \(A,B \in V, x \in T^*\)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), P = \]
\[S \rightarrow a \]
\[S \rightarrow \lambda \]
\[S \rightarrow abS \]

Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), P = \]
\[S \rightarrow aB | bS | \lambda \]
\[B \rightarrow aS | bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\(\iff \) Given a regular grammar \(G \)
- Construct NFA \(M \)
- Show \(L(G) = L(M) \)
\(\implies \) Given a regular language
- \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
- Construct reg. grammar \(G \)
- Show \(L(G) = L(M) \)

Proof of Theorem:

\(\iff \) Given a regular grammar \(G \)
\[G = (V, T, S, P) \]
\[V = \{V_0, V_1, \ldots, V_y\} \]
\[T = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]
Assume \(G \) is right-linear
\(\text{ (see book for left-linear case).} \)
- Construct NFA \(M \) s.t. \(L(G) = L(M) \)
- If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)

\[M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \]
\[V_0 \text{ is the start (initial) state} \]
For each production, \(V_i \rightarrow aV_j \),
For each production, $V_i \rightarrow a$,

Show $L(G) = L(M)$

Thus, given R.G. G,

$L(G)$ is regular

$(\Rightarrow) \text{Given a regular language } L$

$\exists \text{DFA } M \text{ s.t. } L = L(M)$

$M = (Q, \Sigma, \delta, q_0, F)$

$Q = \{q_0, q_1, \ldots, q_n\}$

$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$

$G = (Q, \Sigma, q_0, P)$

if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$

Thus, $L(G) = L(M)$.

QED.

Example

$G = (\{S, B\}, \{a, b\}, S, P)$, $P =$

$S \rightarrow aB \mid bS \mid \lambda$

$B \rightarrow aS \mid bB$

Example: