Section: Regular Languages

Regular Expressions
Method to represent strings in a language

+ union (or)
 ◦ concatenation (AND) (can omit)
 * star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given Σ,

1. \emptyset, λ, $a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{\lambda\}, \{a\} \) are \(L \) denoted by a R.E.

2. if \(r \) and \(s \) are R.E. then

 (a) \(L(r+s) = L(r) \cup L(s) \)

 (b) \(L(rs) = L(r) \circ L(s) \)

 (c) \(L((r)) = L(r) \)

 (d) \(L((r)^*) = (L(r)^*) \)
Precedence Rules

* highest

Example:

\[ab^* + c = \]
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w$ has an odd number of a’s followed by an even number of b’s$\}$.

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w$ has no more than 3 a’s and must end in ab}.

3. Regular expression for positive and negative integers
Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r \) be a R.E. Then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).

- Proof:
 \(\emptyset \)
 \(\{ \lambda \} \)
 \(\{ a \} \)

Suppose \(r \) and \(s \) are R.E.

1. \(r + s \)
2. \(r \circ s \)
3. \(r^* \)
Example

\[ab^* + c \]
Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively until two states left

• Proof:

L is regular

$\Rightarrow \exists$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii} r_{ij} r_{jj} r_{ji})^* r_{ii} r_{ij} r_{jj} \]
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

- $r + r = r$
- $s + r^*s = $
- $r + \emptyset = $
- $r\emptyset = $
- $\emptyset^* = $
- $r\lambda = $
- $(\lambda + r)^* = $
- $(\lambda + r)r^* = $

and similar rules.
Example:
Grammar $G = (V, T, S, P)$

- V: variables (nonterminals)
- T: terminals
- S: start symbol
- P: productions

Right-linear grammar:

- all productions of form $A \rightarrow xB$
- $A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form

\[A \rightarrow Bx \]
\[A \rightarrow x \]

where \(A, B \in V, x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow Sab \]
Example 2:

$$G= (\{S,B\}, \{a,b\}, S, \mathcal{P}), \quad \mathcal{P}= \\
S \rightarrow \text{aB} \mid \text{bS} \mid \lambda \\
B \rightarrow \text{aS} \mid \text{bB}$$
Theorem: L is a regular language iff \(\exists \) regular grammar G s.t. \(L = L(G) \).

Outline of proof:

\(\iff \) Given a regular grammar G
Construct NFA M
Show \(L(G) = L(M) \)

\(\Rightarrow \) Given a regular language
\(\exists \) DFA M s.t. \(L = L(M) \)
Construct reg. grammar G
Show \(L(G) = L(M) \)
Proof of Theorem:

(\Leftrightarrow) Given a regular grammar G
\[G = (V, T, S, P) \]
\[V = \{ V_0, V_1, \ldots, V_y \} \]
\[T = \{ v_o, v_1, \ldots, v_z \} \]
\[S = V_0 \]
Assume G is right-linear
(see book for left-linear case).
Construct NFA M s.t. \(L(G) = L(M) \)
If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)
\(M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \)

- \(V_0 \) is the start (initial) state
- For each production, \(V_i \rightarrow aV_j \),

For each production, \(V_i \rightarrow a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

- \(L(G) \) is regular
Given a regular language L

\exists DFA M s.t. $L=L(M)$

$M=(Q, \Sigma, \delta, q_0, F)$

$Q=\{q_0, q_1, \ldots, q_n\}$

$\Sigma = \{a_1, a_2, \ldots, a_m\}$

Construct R.G. G s.t. $L(G) = L(M)$

$G=(Q, \Sigma, q_0, P)$

if $\delta(q_i, a_j)=q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$

Thus, $L(G)=L(M)$.

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \\ P = \\]
\[S \rightarrow aB \mid bS \mid \lambda \\]
\[B \rightarrow aS \mid bB \]
Example: