Section: Properties of Regular Languages

Example

$L = \{ a^n b a^n \mid n > 0 \}$

Closure Properties

A set is closed over an operation if

$L_1, L_2 \in \text{class}$
$L_1 \text{ op } L_2 = L_3$
$
\Rightarrow L_3 \in \text{class}$
$L_1 = \{ x \mid x \text{ is a positive even integer} \}$

L is closed under

- addition?
- multiplication?
- subtraction?
- division?

Closure of Regular Languages

Theorem 4.1 If L_1 and L_2 are regular languages, then

- $L_1 \cup L_2$
- $L_1 \cap L_2$
- L_1L_2
- $\overline{L_1}$
- L_1^*

are regular languages.
Proof(sketch)

L_1 and L_2 are regular languages

$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.

$L_1 = L(r_1)$ and $L_2 = L(r_2)$

$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$

\Rightarrow closed under union

r_1r_2 is r.e. denoting L_1L_2

\Rightarrow closed under concatenation

r_1^* is r.e. denoting L_1^*

\Rightarrow closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

- final states in M are nonfinal states in M'
- nonfinal states in M are final states in M'

\Rightarrow closed under complementation
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = (Q \times P)$

δ':

$\delta'((q_i, p_j), a) = (q_k, p_l)$ if

$w \in L(M') \iff w \in L_1 \cap L_2$

\Rightarrow closed under intersection
Example:
Regular languages are closed under

- reversal L^R
- difference $L_1 - L_2$
- right quotient L_1 / L_2
- homomorphism $h(L)$
Right quotient

Def: $L_1/L_2 = \{x | xy \in L_1 \text{ for some } y \in L_2 \}$

Example:

$L_1 = \{a^*b^* \cup b^*a^* \}$
$L_2 = \{b^n | n \text{ is even, } n > 0 \}$
$L_1/L_2 =$
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ s.t. $L_1 = L(M)$.

Construct DFA $M'=\langle Q, \Sigma, \delta, q_0, F' \rangle$

For each state i do

Make i the start state (representing L'_i) if $L'_i \cap L_2 \neq \emptyset$ then put q_i in F' in M'

QED.
Homomorphism

Def. Let \(\Sigma, \Gamma \) be alphabets. A homomorphism is a function

\[
h: \Sigma \rightarrow \Gamma^*
\]

Example:

\[
\Sigma = \{a, b, c\}, \quad \Gamma = \{0, 1\}
\]

\[
h(a) = 11 \\
h(b) = 00 \\
h(c) = 0
\]

\[
h(bc) =
\]

\[
h(ab^*) =
\]
Questions about regular languages:

L is a regular language.

• Given L, \(\Sigma \), \(w \in \Sigma^* \), is \(w \in L \)?

• Is L empty?

• Is L infinite?

• Does \(L_1 = L_2 \)?
Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m | n > 0, m > 0\} = aa^*bb^*$
- $L_2 = \{a^n b^n | n > 0\}$
Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

• Proof:
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

$$
|xy| \leq m \\
|y| \geq 1 \\
xy^iz \in L \text{ for all } i \geq 0
$$
To Use the Pumping Lemma to prove L is not regular:

• Proof by Contradiction.
 Assume L is regular.
 ⇒ L satisfies the pumping lemma.
 Choose a long string \(w \) in L, \(|w| \geq m\).
 Show that there is NO division of \(w \) into \(xyz \) (must consider all possible divisions) such that \(|xy| \leq m\), \(|y| \geq 1\) and \(xy^i z \in L \ \forall \ i \geq 0\).
 The pumping lemma does not hold. Contradiction!
 ⇒ L is not regular. QED.
Example $L = \{a^n b^n | n > 0\}$

L is not regular.

• Proof:

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$
Example $L = \{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$

 So the partition is:
Example $\Sigma = \{a, b\}$,
$L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\}$

L is not regular.

• Proof:

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$

 So the partition is:
Example \(L = \{a^3b^n c^{n-3} | n > 3\} \)

\(L \) is not regular.
To Use Closure Properties to prove L is not regular:

- Proof Outline:
 Assume L is regular.
 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.
 closure properties $\Rightarrow L'$ is regular.
 Contradiction!
 L is not regular. QED.
Example $L = \{a^3b^nc^{n-3} | n > 3\}$

L is not regular.

- **Proof: (proof by contradiction)**

 Assume L is regular.

 Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$

 $h(a) = a$ $h(b) = a$ $h(c) = b$

 $h(L) =$
Example $L = \{a^n b^m a^m | m \geq 0, n \geq 0\}$

L is not regular.

- Proof: (proof by contradiction)
 Assume L is regular.
Example: \(L_1 = \{ a^n b^n a^n | n > 0 \} \)

\(L_1 \) is not regular.