Filtering Tricks and Extensions

Ron Parr CPS 1/296

What we know so far

- · Kalman filter
 - Assumes linear-Gaussian model
 - Exact, closed form solution given assumptions
- Particle filter
 - No modeling assumptions
 - Uses particles (simulation) to model distribution
 - May require many particles in some cases (= slow)

What if dynamics aren't linear?

- · Kalman filter assumes:
 - $-x_{t+1} = f(x_t) + noise$
 - f assumed linear
- · For non-linear f
 - $-x_{t+1} \sim x_t + f'(x_t)\Delta_{xt} + \text{noise}$
 - First order linear approximation

Making it work

- · Kalman filter linear update: Ax
- Extended kalman filter update: A'∆x
- A' is the jacobian of the (non-linear) transition dynamics

$$A' = \begin{pmatrix} \frac{\partial x^{i}_{t+1}}{\partial x^{i}_{t}} & \cdots & \frac{\partial x^{i}_{t+1}}{\partial x^{n}_{t}} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^{n}_{t+1}}{\partial x^{i}_{t}} & \cdots & \frac{\partial x^{n}_{t+1}}{\partial x^{n}_{t}} \end{pmatrix}$$

Making it work II

- Must recompute Jacobian at every time step
- · Derivatives taken at current mean
- ∆x must also be computed dynamically
- May also need to linearize observation model

EKF Pros and Cons

- Pros:
 - Works well for small step sizes
 - Computationally tractable in most cases
 - Distribution remains bounded size
- Cons:
 - Gets into trouble for large step sizes
 - Requires real time differentiation

Unscented Filter

- · Idea:
 - Still represent distribution as a Gaussian
 - Use simulation to estimate parameters of Gaussian
- · Implementation:
 - Pick a set of points with sample mean and sample covariance equal to current Gaussian
 - (e.g. points evenly space along a 1 SD contour)
 - Push these points through the particle filter equations - Compute a new sample mean and covariance for the weighted, post-simulation points

Surprising Facts about the UKF

- It stinks less than the EKF ☺
- · Mean and covariance at least as good as (actually better than) EKF - accurate up to second order
- · No real time differentiation
- · Fast and easy to implement

Why the UKF isn't a silver bullet

- · Still assumes a Gaussian representation
- · Can lead to (increasingly) bad approximations if distribution is not Gaussian
- · ...though probably no worse than EKF

Rao Blackwellised Particle Filter

- Idea:
 - Sometimes it is possible to do parts of the filtering equations exactly, but not all
 - Sample the hard parts (particle filter)
 - Do the easy parts exactly (Kalman filter, or other method)
- · Example application
 - Switching Kalman filter
 - Discrete variable selects from a set of possible linear
 - dynamics at each time step
 - Mixture Kalman filter
 - · Sample discrete variables
 - Do exact KF computations for continuous variables

Mixture Kalman Filter Implementation

- · Distribution is a set of particles, where each particle is a Gaussian distribution
- Can combine with EKF, UKF, etc.
- · Efficiency, accuracy depend upon
 - Number of particles
 - Size of sampled state space
 - Concentration of particles
 - Approximation quality (EKF, UKF)

Summary

- Kalman filter
- Linear/Gaussian model
- Closed form solution Exact when assumptions met
- Extended Kalman Filter
 - Linearized Gaussian model Closed form solution
 - Gaussian approximation to non-Gaussian reality
 Unscented Filter
- - ISCENTIBLE FILED
 Arbitrary model (almost)
 Sample based approximation (for careful selection of sample points)
 Fits Gaussian to samples
- Particle Filter

- Arbitrary model (almost)
 Sample based approximation
 Quality depends upon #of particles, distribution
 Rao-Blackwellized Particle filter
- - Arbitrary model (almost)
 Combines sampling w/closed form solution
 Mixture of distributions approximation improves on particle filter accuracy