Gamma

Ron Parr CPS 1/296

How do things respond to energy?

- Sensors:
 - Typically linear response
 - Special designs are nonlinear
- Eves
 - Typically nonlinear
 - Small increases in energy noticeable in low light, but not noticeable in bright light
 - People can detect about 1% change in energy
- · Displays:
 - CRTs are nonlinear (surprisingly convex)
 - Newer technologies vary

Role of Gamma Correction

- Traditionally, gamma correction has been applied to compensate for non-linearity of CRT response
- Correction is applied (green) before signal is sent to CRT
- CRT non-linearity (red) cancels out green for linear response

Sanity Check

- Q: Why do we want overall linear response?
- A: For authentic reproduction, we want reproduced outputs to be proportional to luminance in the original scene

Gamma and Bit Depth

- Gamma correction leads to a parsimonious use of bits
- More bits allocated to noticeable changes

- First 50% of bits cover ~75% of range
- Increasing amount of energy needed to consume bits

Practical Consequences

- We would need about 14 bits with linear encoding to capture full dynamic range of our eyes
- Non-linear encoding would require 9-10 bits
- 8-bit non-linear encoding is "pretty good"
 Used for HDTV
 DVDs

 - Most jpegs, etc.