\square

HMM Applications

- Target tracking
- Patient/factory monitoring
- Speech recognition
- Robot mapping and localization

Back to Atomic Events

- We began talking about probabilities from the perspective of atomic events
- An atomic event is an assignment to every random variable in the domain
- For n random variables, there are 2^{n} possible atomic events
- State variables return later

States

- When reasoning about time, we often call atomic events states
- States, like atomic events, form a mutually exclusive and jointly exhaustive partition of the space of possible events
- We can describe how a system behaves with a state-transition diagram

State Transition Diagram

$\mathrm{P}(\mathrm{S} 2 \mid \mathrm{S} 1)=0.75$
$P(S 1 \mid S 1)=0.25$ $\mathrm{P}(\mathrm{S} 2 \mid \mathrm{S} 2)=0.50$ $\mathrm{P}(\mathrm{S} 1 \mid \mathrm{S} 2)=0.50$

[^0]
State Transition Diagrams

- Make a lot of assumptions
- Transition probabilities don't change over time (stationarity)
- The event space does not change over time
- Probability distribution over next states depends only on the current state (Markov assumption)
- Time moves in uniform, discrete increments

The Markov Assumption

- Let S_{t} be a random variable for the state at time t
- $\mathrm{P}\left(\mathrm{S}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}-1}, \ldots, \mathrm{~S}_{0}\right)=\mathrm{P}\left(\mathrm{S}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}-1}\right)$
- (Use subscripts for time; S0 is different from S_{0})
- Markov is special kind of conditional independence
- Future is independent of past given current state

Markov Models

- A system with states that obey the Markov assumption is called a Markov Model
- A sequence of states resulting from such a model is called a Markov Chain
- The mathematical properties of Markov chains are studied heavily in mathematics, statistics, computer science, electrical engineering, etc.

What's The Big Deal?

- A system that obeys the Markov property can be described succinctly with a transition matrix, where the i,jth entry of the matrix is $\mathrm{P}(\mathrm{Sj} \mid \mathrm{Si})$
- The Markov property ensures that we can maintain this succinct description over a potentially infinite time sequence
- Properties of the system can be analyzed in terms of properties of the transition matrix
- Steady-state probabilities
- Convergence rate, etc.

Observations

- Introduce E_{t} for the observation at time t
- Observations are like evidence
- Define the probability distribution over observations as function of current state: $\mathrm{P}(\mathrm{E} \mid \mathrm{S})$
- Assume observations are conditionally independent of other variables given current state
- Assume observation probabilities are stationary

Applications

- Smoothing/hindsight
- Update view of the past based upon future
- Diagnosis: Factory exploded at time $t=20$, what happened at $t=5$ to cause this?
- Most likely explanation
- What is the most likely sequence of events (from start to finish) to explain what we have seen?

Viterbi Path

From definition of HMM and conditional indendpence:

$$
P\left(S_{0} E_{0} \ldots S_{t} E_{t}\right)=P\left(S_{0}\right) P\left(E_{0} \mid S_{0}\right) \prod_{i=1}^{t} P\left(S_{i} \mid S_{i-1}\right) P\left(E_{i} \mid S_{i}\right)
$$

Suppose we want max probability sequence of states:

$=\max _{S_{S-1}, S} \prod_{i=1}^{n} P\left(S_{i} \mid S_{-1}\right) P\left(E_{i} \mid S_{i}\right) \max _{S_{0}} P\left(S_{1} \mid S_{0}\right) P\left(S_{0}\right) P\left(E_{0} \mid S_{0}\right)$

Keep distributing max over product!

Viterbi Path vs. Stereo DP

- At first seem like very different things
- Both are actually the SAME DP algorithm
- Stereo DP:
- Can be viewed as shortest path through disparity space
- Uses fact that addition is associative
- Viterbi path:
- Computes lowest cost path through HMM
- Uses fact that multiplication is associative
- Logs vs. probabilities
- Maximizing product of probs equivalent to maximizing sum of log probabilities
- Converting HMM probabilities to log probabilities makes viterbi classical shortest path problem

Deriving Tracking Equations Our Main Tool

$$
\begin{aligned}
& P(A \wedge B)=P(B \wedge A) \\
& P(A \mid B) P(B)=P(B \mid A) P(A) \\
& P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Monitoring

We want: $P\left(S_{t} \mid e_{t} \ldots e_{0}\right)$

$$
\begin{aligned}
& P\left(S_{t} \mid e_{t} \ldots e_{0}\right)=\frac{P\left(e_{t} \mid S_{t}, e_{t-1} \ldots e_{0}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right)}{P\left(e_{t} \mid e_{t-1} \ldots e_{0}\right)} \\
& =\alpha P\left(e_{t} \mid S_{t} e_{t-1} \ldots e_{0}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right) \\
& =\alpha P\left(e_{t} \mid S_{t}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right) \\
& =\alpha P\left(e_{t} \mid S_{t}\right) \sum_{S_{t-1}} P\left(S_{t} \mid S_{t-1}\right) P\left(S_{t-1} \mid e_{t-1} \ldots e_{0}\right)
\end{aligned}
$$

Monitoring
We want: $\mathrm{P}\left(\mathrm{S}_{\mathrm{t}} \mid \mathrm{e}_{\mathrm{t}} \ldots \mathrm{e}_{0}\right)$
$P\left(S_{t} \mid e_{t} \ldots e_{0}\right)=\frac{P\left(e_{t} \mid S_{t}, e_{t-1} \ldots e_{0}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right)}{P\left(e_{t} \mid e_{t-1} \ldots e_{0}\right)}$ $=\alpha P\left(e_{t} \mid S_{t} e_{t-1} \ldots e_{0}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right)$ $=\alpha P\left(e_{t} \mid S_{t}\right) P\left(S_{t} \mid e_{t-1} \ldots e_{0}\right)$ $=\alpha P\left(e_{t} \mid S_{t}\right) \sum_{S_{t-1}} P\left(S_{t} \mid S_{t-1}\right) P\left(S_{t-1} \mid e_{t-1} \ldots e_{0}\right)$ $R e c u r s i v e$

Extending Bayes Rule

$$
P(A \mid B C)=\frac{P(B \mid A C) P(A \mid C)}{P(B \mid C)}
$$

How to think about this: The C is like "extra" evidence.
This forces us into one corner of the event space.
Given that we are in this corner, everything behaves the same.

Hindsight

$$
\begin{aligned}
P\left(S_{k} \mid e_{t} \ldots e_{0}\right) & =\alpha P\left(e_{t} \ldots e_{k+1} \mid S_{k}, e_{k} \ldots e_{0}\right) P\left(S_{k} \mid e_{k} \ldots e_{0}\right) \\
& =\alpha P\left(e_{t} \ldots e_{k+1} \mid S_{k}\right) P\left(S_{k} \mid e_{k} \ldots e_{0}\right) \text { Monitoring! } \\
P\left(e_{t} \ldots e_{k+1} \mid S_{k}\right) & =\sum_{S_{k+1}} P\left(e_{t} \ldots e_{k+1} \mid S_{k} S_{k+1}\right) P\left(S_{k+1} \mid S_{k}\right) \\
& =\sum_{S_{k+1}} P\left(e_{t} \ldots e_{k+1} \mid S_{k+1}\right) P\left(S_{k+1} \mid S_{k}\right) \\
& =\sum_{S_{k+1}} P\left(e_{k+1} \mid S_{k+1}\right) P\left(e_{t} \ldots e_{k+2} \mid S_{k+1}\right) P\left(S_{k+1} \mid S_{k}\right)
\end{aligned}
$$

Hindsight Summary

- Forward: Compute k state distribution given
- Forward distribution up to k
- Observations up to k
- Equivalent to monitoring up to k
- Equivalent to eliminating variables <k
- Backward: Compute conditional evidence distribution after k
- Work backward from t to k
- Equivalent to to eliminating variables $>k$
- Smoothed state distribution is proportional to product of forward and backward components

Checkpoint

- Done: Forward Monitoring and Backward Smoothing
- Monitoring is recursive from the past to the present
- Backward smoothing requires two recursive passes
- Called the forward-backward algorithm
- Independently discovered many times throughout history
- Was classified for many years by US Govt.

What's Left?

- We have seen that filtering and smoothing can be done efficiently, so what's the catch?
- We're still working at the level of atomic events
- There are too many atomic events!
- Not all systems are discrete
- Need:
- Ways of dealing with continuous variables
- Ways of dealing with very large state spaces

Continuous Variables

- How do we represent a probability distribution over a continuous variable?
- Probability density function
- Summations become integrals
- Very messy except for some special cases:
- Distribution over variable X at time $t+1$ is a multivariate normal with a mean that is a linear function of the variables at the previous time step
- This is a linear-Gaussian model

Inference in Linear Gaussian Models

- Filtering and smoothing integrals have closed form solution
- Elegant solution known as the Kalman filter - Used for tracking projectiles (radar)
- State is modeled as a set of linear equations
- $\mathrm{S}=\mathrm{vt}$
- $\mathrm{V}=\mathrm{at}$
- What about pilot controls?

Related Topics

- Continuous time
- Need to model system using differential equations
- Non-stationarity
- What if the model changes over time?
- This touches on learning
- What about controlling the system w/actions?
- Markov decision processes

[^0]: Don't confuse states with state variables! Don't confuse states with state variables! Don't confuse states with state variables!

