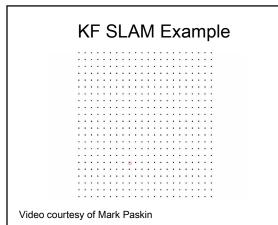
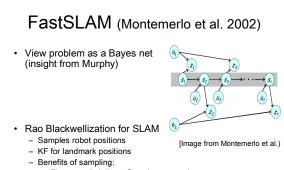

Introduction to SLAM

Ron Parr CPS 1/296


Mapping as Filtering

- Goals of Simultaneous Localization and Mapping
 Constant time computation per sensor sweep
 - No accumulating error
- Insight: Track map+robot state together
 SLAM problem is a big HMM/Kalman filter
 Filtering equations give correct probability distribution
 - Filtering equations give correct probability distribution over map and robot position, integrating all evidence up to current time step
- Proposed by Smith, Self and Cheeseman in 1990, but not immediately pursued


Kalman Filter SLAM Properties

- Assumes:
 - Linear motion model
 - Gaussian noise
- Produces
 - Robot position estimates
 - Landmark position estimates
 - Means and full covariance matrix
- (In most cases, must use EKF)

Problems with KF SLAM

- Reality is not linear Gaussian (partially addressed by EKF/UKF)
- Produces only a map of landmarks
- n landmarks: O(n²) cost
- Data association problem

- Fixes unrealistic linear-Gaussian assumption
- · Landmark positions become independent
- Linear cost in no. of landmarks seen

Map Storage for FastSLAM

- · Each map requires linear space in number of landmarks
- · Expensive with larger numbers of particles and maps
- Solution: Use copy-on-write

Limitations of FastSLAM

- Doesn't address data association problem
- · Doesn't address landmark sparseness issue
- Tends to require a lot of particles over long trajectories
 See videos from Mark Paskin
 - Why? (discussion)