Particle Filters

Ron Parr CPS 1/296

Outline

- Problem: Track state over time
 - State = position, orientation of robot (condition of patient, position of airplane, status of factory, etc.)
- · Challenge: State is not observed directly
- Solution: Tracking using a model
 - Exact
 - Approximate (Particle filter)

Example

- · Robot is monitoring door to the Al lab
- D = variable for status of door (True = open)
- · Initially we will ignore observations
- · Define Markov model for behavior of door:

$$P(D_{t+1} | D_t) = 0.8$$

 $P(D_{t+1} | \overline{D_t}) = 0.3$

Problem

Suppose we believe the door was closed with prob. 0.7 at time t.

What is the prob. that it will be open at time t+1?

$$P(D_{t+1} \mid D_t) = 0.8$$

$$P(D_{t+1} \mid \overline{D}_t) = 0.3$$

Staying open Switching from closed to open

$$P(D_{t+1}) = P(D_{t+1} \mid D_t)P(D_t) + P(D_{t+1} \mid \overline{D_t})P(\overline{D_t})$$

= 0.8 * 0.7 + 0.3 * 0.3 = 0.65

Generalizing

• Suppose states are not binary:

$$P(S_{t+1}) = \sum_{S_t} P(S_{t+1} | S_t) P(S_t)$$

• Suppose states are continuous

$$p(S_{t+1}) = \int_{S_t} p(S_{t+1} \mid S_t) p(S_t) dS_t$$

 Issue: For large or continuous states spaces this may be hard to deal with exactly

Monte Carlo Approximation (Sampling)

• We can approximate a nasty integral by sampling and counting:

$$p(S_{t+1}) = \int_{S_t} p(S_{t+1} \mid S_t) p(S_t) dS_t$$

- · Repeat n times:
 - Draw sample from p(S_t)
 - Simulate transition to S_{t+1}
- Count proportion of states for each value of S_{t+1}

Example

Pick n=1000

- 700 door open samples

 $P(D_{t+1} | D_t) = 0.8$ $P(D_{t+1} | \overline{D}_t) = 0.3$

- 300 door closed samples
- For each sample generate a next state
 - For open samples use prob. 0.8 for next state open
 - For closed samples use prob. 0.3 for next state open
- · Count no. of open and closed next states
- Can prove that in limit of large n, our count will equal true probability (0.65)

Example Revisited

- D = Door status
- O = Robot's observation of door status
- Observations may not be completely reliable!

$$P(D_{t+1} | D_t) = 0.8$$

$$P(D_{t+1} \mid \overline{D}_t) = 0.3$$

$$P(O \mid D) = 0.6$$

$$P(O \mid \overline{D}) = 0.2$$

Modified Sampling

- Problem: How do we adjust sampling to handle evidence?
- Solution: Weight each sample by the probability of the observations
- Called importance sampling, or likelihood weighting
- Does the right thing for large n

Example with evidence

 $P(D_{t+1} \mid D_t) = 0.8$

 $P(D_{t+1} \mid \overline{D}_t) = 0.3$

Suppose we observe door closed at t+1

 $P(O \mid D) = 0.6$ $P(O \mid \overline{D}) = 0.2$

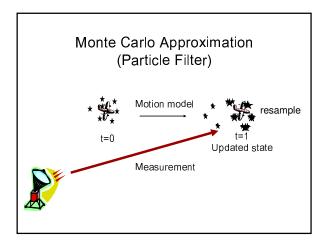
- Pick n=1000
 - 700 door open samples
 - 300 door closed samples
- · For each sample generate a next state
 - For open samples use prob. 0.8 for next state open
 - For closed samples use prob. 0.3 for next state open
 - If next state is open, weight by 0.4
 - If next state is closed, weight by 0.8
- · Compute weighted sum of no. of open and closed states

Problems with IS (LW)

- Sequential importance sampling (SIS) does the right thing for the limit of large numbers of samples
- Problems for finite numbers of samples:
 - Effective sample size drops over time
 - Unlikely events are only small fraction of sample population
 - Eventually
 - · Something unlikely happens
 - A sequence of individually likely events has the effect of a single unlikely event
 - Estimates become unreliable b/c based on a small no. of samples

Solution: SISR (PF)

- · Maintain n samples for each time step
- Repeat n times:
 - Draw sample from p(S_t)
 (according to current weights)
 - Simulate transition to S_{t+1}
 - Weight samples by evidence
- Count proportion of states for each value of \boldsymbol{S}_{t+1}



Robot Localization

- · Particle filters combine:
 - A model of state change
 - A model of sensor readings
- · To track objects with hidden state over time
- · Robot application:
 - Hidden state: Robot position, orientation
 - State change model: Robot motion model
 - Sensor model: Laser rangefinder error model
- Note: Robot is tracking itself!

Main Loop

- · Sample n robot states
- · For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Robot States

- Robot has X,Y,Z,θ
- · Usually ignore z
 - assume floors are flat
 - assume robot stays on one floor
- Form of samples
 - $\; \big(X_{_{i}}, Y_{_{i}}, \theta_{_{i}}, p_{_{i}} \big)$
 - $-\sum p_i = 1$

Main Loop

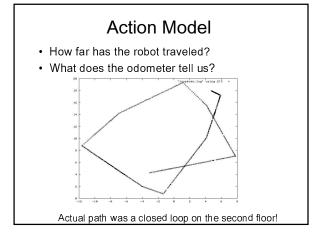
- · Sample n robot states
- · For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Sampling Robot States

- Need to generate n new samples from our previous set of n samples
- Draw n new robot states with replacement
- for i=1 to n
 - r = rand[0...1]
 - temp = k = 0
 - while(temp <= r)</pre>
 - temp=temp+samples[k] p
 - k = k+1
 - newsamples[i] = samples[k-1] (n.b. this should copy)
- samples = newsamples

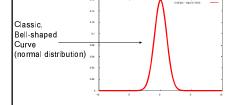
Main Loop

- Sample n robot states
- · For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- · Repeat



Odometer Model

- · Odometer is:
 - Relatively accurate model of wheel turn
 - Very inaccurate model of actual movement
- Actual position = odometer X, Y, θ + random noise



Simulation Implementation

- · Start with odometer readings
- · Add linear correction factor

 $-X = a_x * X + b_x$

Linear correction

 $- Y = a_y^*Y + b_y$ $- \theta = a_\theta^*\theta + b_\theta$ (determined experimentally)

· Add noise from the normal distribution

 $-X = X + N(0,s_x)$ $-\theta = \theta + N(0,s_{\theta})$

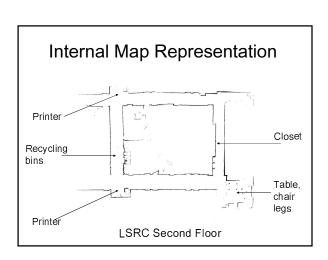
 $- Y = Y + N(0,s_x)$

 $N(\mu,s)$ returns random noise from normal distribution with

mean μ and standard deviation s (standard deviation determined experimentally

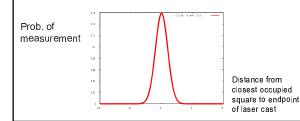
Main Loop

- Sample n robot states
- · For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat



Laser Error Model

- Laser measures distance at 180 one degree increments in front of the robot (height is fixed)
- Laser rangefinder errors also have a normal distribution



Laser Error Model Contd.

Probability of error in measurement k for sample i (normal)

$$p_{ik}(x_k) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-x_k^2}{2\sigma^2}}$$

- x_k is distance of laser endpoint to closest obstacle

Laser Error Model Contd.

- · Laser measurements are independent
- Weight of sample is product of errors:

$$p_i = \prod_{i} p_{ik}$$

- Note: Good to bound x to prevent a single bad measurement from making p, too small
- · Compute new weights for all particles:
- for i=1 to n
 - samples[i].p = p_i

Main Loop

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Main Loop

- Sample n robot states
- · For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

How do we use this?

Best Guess of Position

 Recover best guess of true position from weighted average of particle positions:

$$\bar{x} = \sum_{i} sample[i].x * sample[i].p$$