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Outline

* Problem: Track state over time

— State = position, orientation of robot (condition of
patient, position of airplane, status of factory, etc.)

» Challenge: State is not observed directly
» Solution: Tracking using a model

— Exact

— Approximate (Particle filter)

Example

» Robot is monitoring door to the Al lab
» D = variable for status of door (True = open)
« Initially we will ignore observations

« Define Markov model for behavior of door:

P(D
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ID,)=038
ID,)=0.3

Problem

Suppose we believe the door was closed with prob. 0.7 at time t.

What is the prob. that it will be open at time t+17?

P(D,,1D,)=0.8
P(D,,1D,)=0.3

Staying open Switching from closed to open

S

P(D,,,)=P(D,,,|D,)P(D,)+P(D

t+1

=0.8%0.74+0.3%0.3=0.65

|D,)P(D,)

Generalizing

» Suppose states are not binary:
P(SI+])=ZP(SI+1 | S/)P(S/)
S

» Suppose states are continuous

p(SH-]) = J. p(SH-l I S:)p(Sl)dS,
S,

* Issue: For large or continuous states spaces
this may be hard to deal with exactly

Monte Carlo Approximation
(Sampling)

* We can approximate a nasty integral by
sampling and counting:

(S0 = [ P(S..18)p(S,)dS,
S

* Repeat n times:
— Draw sample from p(S,)
— Simulate transition to S,

+ Count proportion of states for each value of S,,,




Example

. P(D,,1D,)=0.8
+ Pick n=1000 _
— 700 door open samples P(D,,1D,)=03
— 300 door closed samples
+ For each sample generate a next state
— For open samples use prob. 0.8 for next state open
— For closed samples use prob. 0.3 for next state open
« Count no. of open and closed next states

= Can prove that in limit of large n, our count will equal
true probability (0.65)
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Example Revisited

* D = Door status
* O = Robot’s observation of door status
+ Observations may not be completely reliable!

P(D,

t+1

ID,)=0.8
P(D,,1D,)=0.3
P(O1D)=0.6
P(OID)=0.2

Modified Sampling

* Problem: How do we adjust sampling to
handle evidence?

» Solution: Weight each sample by the
probability of the observations

+ Called importance sampling, or
likelihood weighting

Does the right thing for large n

Example with evidence

P(D,,1D,)=0.8
P(D,,1D,)=0.3
Suppose we observe door closed at t+1 P(O1D)=0.6
Pick n=1000 P(O1D)=02

— 700 door open samples

— 300 door closed samples

For each sample generate a next state

— For open samples use prob. 0.8 for next state open
— For closed samples use prob. 0.3 for next state open
— If next state is open, weight by 0.4

— If next state is closed, weight by 0.8

Compute weighted sum of no. of open and closed states

Problems with IS (LW)

» Sequential importance sampling (SIS) does
the right thing for the limit of large numbers of
samples

» Problems for finite numbers of samples:

— Effective sample size drops over time

— Unlikely events are only small fraction of sample
population
— Eventually
+ Something unlikely happens
+ A sequence of individually likely events has the effect of
a single unlikely event
— Estimates become unreliable b/c based on a small
no. of samples

Solution: SISR (PF)

* Maintain n samples for each time step
* Repeat n times:

— Draw sample from p(S,)
(according to current weights)

- Simulate transition to S,
— Weight samples by evidence

+ Count proportion of states for each
value of Sy,




Monte Carlo Approximation
(Particle Filter)

Motion model ¢ &1 |
. ‘% resample
LA g
t=1

Updated state

Measurement
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Robot Localization

+ Particle filters combine:
— A model of state change
— A model of sensor readings
» To track objects with hidden state over time

» Robot application:
— Hidden state: Robot position, orientation
— State change model: Robot motion model
— Sensor model: Laser rangefinder error model

* Note: Robot is tracking itself!

Main Loop

+ Sample n robot states
* For each state
— Simulate next state (action model)

— Weight states (observation model)
— Normalize

* Repeat

Main Loop

» Sample n robot states
* For each state
— Simulate next state (action model)

— Weight states (observation model)
— Normalize

* Repeat

Robot States

* Robot has XY,Z,6
* Usually ignore z

— assume floors are flat

— assume robot stays on one floor
* Form of samples

= (X,Y4,0,p)

- Zp,.=1

Sampling Robot States

* Need to generate n new samples from our
previous set of n samples
» Draw n new robot states with replacement
» fori=1ton
— r=rand[0...1]
—temp=k=0
— while(temp <=r)
= temp=temp+samples[k].p
- k=k+1
— newsamples|i] = samples[k-1] (n.b. this should copy)
* samples = newsamples




Main Loop

Sample n robot states
* For each state
- Simulate next state (action model)

— Weight states (observation model)
— Normalize

* Repeat

Odometer Model

¢ Odometer is:

— Relatively accurate model of wheel turn

— Very inaccurate model of actual movement

* Actual position = odometer X,Y,0 + random noise

Classic,

Bell-shaped
Curve
(normal distribution) ...
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Action Model

» How far has the robot traveled?
* What does the odometer tell us?

Tappedie.

Actual path was a closed loop on the second floor!

Simulation Implementation

+ Start with odometer readings
» Add linear correction factor

- X=aX+b,

- Y=a/Y+b, Linear correction

— 8=a,"0+b, (determined experimentally)
* Add noise from the normal distribution

- X=X+ N(0,s,) }

N(u,s) returns random noise
from normal distribution with

mean p and standard deviation s
(standard deviation determined experimentally]

~Y=Y+N(@O,s,)
— 9=0+N(0,3,)

Main Loop

+ Sample n robot states
* For each state

— Simulate next state (action model)

- Weight states (observation model)
— Normalize

* Repeat

Internal Map Representation
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Laser Error Model

« Laser measures distance at 180 one degree
increments in front of the robot (height is fixed)

« Laser rangefinder errors also have a normal
distribution

Prob. of
measurement

Distance from
closest occupied
square to endpoint
© of laser cast
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Laser Error Model Contd.

* Probability of error in measurement k for sample i
(normal)

2
-

e 20

1
() =
Pu (X, oox

x is distance of laser endpoint to closest obstacle

o is standard deviation in this measurement (estimated
experimentally), usually a few cm.

Laser Error Model Contd.

» Laser measurements are independent
» Weight of sample is product of errors:

D= Hpik
3

Note: Good to bound x to prevent a single bad
measurement from making p; too small

» Compute new weights for all particles:
fori=1ton
— samples[i].p = p;

Main Loop

+ Sample n robot states
* For each state
— Simulate next state (action model)

— Weight states (observation model)
- Normalize

* Repeat

Main Loop

+ Sample n robot states
* For each state
— Simulate next state (action model)

— Weight states (observation model)
— Normalize

* Repeat

How do we use this?

Best Guess of Position

* Recover best guess of true position
from weighted average of particle
positions:

xX= Z samplelil.x* sample[i].p




