Understanding Sensors I

Range Finders

CPS 1/296 Ron Parr

Overview

- Sonars
- · Laser Range Finders
- IR Range Finders
- Cameras

Sonar

- Very old and common ranging method
- Used by:
 - Bats & Dolphins
 - Early autofocus cameras
 - Submarines and ships
 - Electronic white boards
 - Early robots
 - Medical field

Sonar: Basic Idea

- · Send out a "ping"
- Calculate time for ping to return to source
- · Compute distance traveled from:
 - Delay
 - Speed of sound (344 m/s)
- Basic sonar devices are simple and inexpensive to fabricate using current technology

Problems with Sonar

- · Signal spreads out
- Short range (or spreads energy over wide area)
- · Not stealthy
- Sound is (relatively) slow
- · Speed of sound is variable
- Can be confounded by:
 - Echoes
 - Ambient sounds
- · Low resolution
- Difficult to interpret

Sonar Conundrum

How do some creatures manage to be so successful with it????

Laser Range Finders

• In some interpretations:

Almost identical to sonar w/different energy source

- · In reality:
 - Completely different ball game
 - "Time of flight" becomes an interesting problem (speed of light = 3x10⁸ m/s)
 - Completely different set of pros and cons

Laser Pros and Cons

- Pro
 - Very accurate (5mm over 10s of meters)
 - Very precise (beam is collimated)
- High resolution
- Very resistant to environmental conditions
- More stealthy than sonar
- Relatively fast
- Speed of light arguably more predictable than sound
- · Cons:
 - Largish
 - Expensive (thousands to 100s of thousands)
 - Has moving parts (to aim the laser beam)
 - Still active/unstealthy

Examples

http://www.seas.upenn.edu/~taskar/pubs/cvpr05.pdf

 $http://www.riegl.com/terrestrial_scanners/terrestrial_scanner_literature_/downloads_/URS_Railway_Crossings.pdf (a) and (b) and (c) a$

Challenges and Issues

- · Managing cons (cost, size, etc.)
- · Going from points to shapes
- · Mapping color and texture onto shapes
- · Registration and alignment in general

But how does it work???

- Measuring time of flight is tricky
- Time to travel 1cm: 0.033 nanoseconds (1 nanosecond = 10⁻⁹s)
- Solution: Use phase detection
 - Modulate the amplitude of the laser at a high frequency (note: different concept from wavelength of the laser)
 - Combine return signal with output signal
 - Measure phase difference
 - Compute time of travel from phase difference

IR Range Finder

- Note Ambiguity in Terminology: A "laser range finder" typically uses and IR laser. The technology used in IR range finders could also be used with laser.
- "IR Range Finder" typically refers to an inexpensive, short range device that typically uses a linear image sensor and cheap, typically IR, light source

IR Range Finder Ingredients

- · Light Source
- · Strip of light detectors
- Narrow pass filter to reject ambient light

IR Range Finder Construction

- Place sensor and light source in same plane
- Steps:
 - Calibration (optional)
 - Measure ambient light with reference image
 - Use image subtraction to discover light source
 - Activate Light Source
 - Find light source in linear sensor array
 - Compute depth from geometry
- · See in class demo!

IR Range Finder Pros and Cons

- Pro:
 - Relatively inexpensive
 - No moving parts
 - Accurate at short distances
- Con
 - Accuracy drops off with distance
 - Low resolution
- Similar power/stealth issues to lasers, depending upon light source